Skip to content

Commit d332957

Browse files
ahn1340mfeurer
authored andcommitted
Add documentation on f1, recall and precision score with averaging mechanisms in api.rst. (#477)
1 parent 9819098 commit d332957

File tree

1 file changed

+5
-0
lines changed

1 file changed

+5
-0
lines changed

doc/api.rst

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -37,6 +37,11 @@ Built-in Metrics
3737

3838
Classification
3939
~~~~~~~~~~~~~~
40+
Note: The default ``autosklearn.metrics.f1``, ``autosklearn.metrics.precision`` and ``autosklearn.metrics.recall``
41+
built-in metrics are applicable only for binary classification. In order to apply them on multilabel and multiclass
42+
classification, please use the corresponding metrics with an appropriate averaging mechanism, such as ``autosklearn.metrics.f1_macro``.
43+
For more information about how these metrics are used, please read
44+
`this scikit-learn documentation <http://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-and-f-measures>`_.
4045

4146
.. autoclass:: autosklearn.metrics.accuracy
4247

0 commit comments

Comments
 (0)