Skip to content

Commit f2dbcfe

Browse files
committed
MAINT maintenance updates
1 parent a223f13 commit f2dbcfe

File tree

5 files changed

+9
-4
lines changed

5 files changed

+9
-4
lines changed

ci_scripts/circle_install.sh

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ source activate testenv
99
export CC=`which gcc`
1010
# install documentation building dependencies
1111
pip install --upgrade numpy
12-
pip install --upgrade matplotlib setuptools nose coverage sphinx==1.5.5 sphinx_bootstrap_theme numpydoc
12+
pip install --upgrade matplotlib setuptools nose coverage sphinx==1.5.5 sphinx_bootstrap_theme numpydoc sphinx_gallery
1313
# And finally, all other dependencies
1414
cat requirements.txt | xargs -n 1 -L 1 pip install
1515

ci_scripts/test.sh

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ set -e
55
mkdir -p $TEST_DIR
66

77
cwd=`pwd`
8-
examples_dir=$cwd/example
8+
examples_dir=$cwd/examples
99
test_dir=$cwd/test/
1010

1111
cd $TEST_DIR

examples/example_eips.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,8 @@
33
EIPS
44
====
55
6-
Example description goes here.
6+
This example demonstrates the usage of a different acquisition function inside SMAC, namely
7+
`Expected Improvement per Second (EIPS) <https://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.html>_`.
78
"""
89

910
import sklearn.model_selection

examples/example_random_search.py

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -7,6 +7,10 @@
77
through SMAC, introduced `here <http://ml.informatik.uni-freiburg.de/papers/11-LION5-SMAC.pdf>`_.
88
Additionally, it is possible to use `random search <http://www.jmlr.org/papers/v13/bergstra12a.html>`_
99
instead of SMAC, as demonstrated in the example below.
10+
Furthermore, the example also demonstrates how to use
11+
`Random Online Aggressive Racing (ROAR) <http://ml.informatik.uni-freiburg.de/papers/11-LION5-SMAC.pdf>`_
12+
as yet another alternative optimizatino strategy.
13+
Both examples are intended to show how the optimization strategy in *auto-sklearn* can be adapted.
1014
"""
1115

1216
import sklearn.model_selection

test/test_automl/test_estimators.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -311,7 +311,7 @@ def test_multilabel(self):
311311
score = f1_macro(Y_test, predictions)
312312
self.assertGreaterEqual(score, 0.9)
313313
probs = automl.predict_proba(X_train)
314-
self.assertAlmostEqual(np.mean(probs), 0.33, places=2)
314+
self.assertAlmostEqual(np.mean(probs), 0.33, places=1)
315315

316316
def test_binary(self):
317317
output = os.path.join(self.test_dir, '..', '.tmp_binary_fit')

0 commit comments

Comments
 (0)