Skip to content

Commit 1661938

Browse files
Merge pull request #2273 from avinashkranjan/deepsource-transform-0863d605
format code with autopep8
2 parents 0cea8cd + 48aa925 commit 1661938

File tree

1 file changed

+19
-16
lines changed

1 file changed

+19
-16
lines changed

Job Recommendation Engine/Job Recommendation Engine.py

Lines changed: 19 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@
1616
# In[2]:
1717

1818

19-
data=pd.read_csv('naukri_com-jobs__20190701_20190830__30k_data.csv')
19+
data = pd.read_csv('naukri_com-jobs__20190701_20190830__30k_data.csv')
2020

2121

2222
# In[3]:
@@ -28,8 +28,10 @@
2828
# In[4]:
2929

3030

31-
user_profiles = data[['Uniq Id', 'Role Category', 'Location', 'Job Experience Required', 'Key Skills']]
32-
job_postings = data[['Uniq Id', 'Role Category', 'Location', 'Job Experience Required', 'Key Skills']]
31+
user_profiles = data[['Uniq Id', 'Role Category',
32+
'Location', 'Job Experience Required', 'Key Skills']]
33+
job_postings = data[['Uniq Id', 'Role Category',
34+
'Location', 'Job Experience Required', 'Key Skills']]
3335

3436

3537
# ### User Profile
@@ -48,7 +50,8 @@
4850

4951
user_profiles_matrix = pd.get_dummies(user_profiles.drop('Uniq Id', axis=1))
5052
user_profiles_matrix = normalize(user_profiles_matrix) # Normalize the matrix
51-
similarity_matrix = cosine_similarity(user_profiles_matrix, user_profiles_matrix)
53+
similarity_matrix = cosine_similarity(
54+
user_profiles_matrix, user_profiles_matrix)
5255

5356

5457
# ### Job recommendation
@@ -59,26 +62,33 @@
5962
# Define the number of nearest neighbors to consider
6063
k = 5
6164

65+
6266
def get_job_recommendations(user_id):
6367
user_index = user_profiles[user_profiles['Uniq Id'] == user_id].index[0]
64-
similar_users = similarity_matrix[user_index].argsort()[::-1][1:k+1] # Exclude the user itself
68+
similar_users = similarity_matrix[user_index].argsort(
69+
)[::-1][1:k+1] # Exclude the user itself
6570

6671
# Get job postings from similar users
6772
recommended_roles = []
6873
for user in similar_users:
6974
similar_user_id = user_profiles.iloc[user]['Uniq Id']
70-
similar_user_roles = data[data['Uniq Id'] == similar_user_id]['Role Category'].values
75+
similar_user_roles = data[data['Uniq Id'] ==
76+
similar_user_id]['Role Category'].values
7177
recommended_roles.extend(similar_user_roles)
7278

7379
# Filter out already interacted job roles
74-
user_interacted_roles = data[data['Uniq Id'] == user_id]['Role Category'].values
75-
recommended_roles = list(set(recommended_roles) - set(user_interacted_roles))
80+
user_interacted_roles = data[data['Uniq Id']
81+
== user_id]['Role Category'].values
82+
recommended_roles = list(set(recommended_roles) -
83+
set(user_interacted_roles))
7684

7785
# Rank recommended roles based on frequency
78-
recommended_roles = pd.Series(recommended_roles).value_counts().sort_values(ascending=False)
86+
recommended_roles = pd.Series(
87+
recommended_roles).value_counts().sort_values(ascending=False)
7988

8089
return recommended_roles.index.tolist()
8190

91+
8292
# Example usage
8393
user_id = '9be62c49a0b7ebe982a4af1edaa7bc5f'
8494
recommended_roles = get_job_recommendations(user_id)
@@ -90,11 +100,4 @@ def get_job_recommendations(user_id):
90100
# In[ ]:
91101

92102

93-
94-
95-
96103
# In[ ]:
97-
98-
99-
100-

0 commit comments

Comments
 (0)