Skip to content

Commit 3f49e3f

Browse files
committed
image_recognition api added
0 parents  commit 3f49e3f

File tree

2 files changed

+42
-0
lines changed

2 files changed

+42
-0
lines changed

Flask_Apis/.gitignore

Whitespace-only changes.
Lines changed: 42 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,42 @@
1+
import numpy as np
2+
from flask import Flask, request, jsonify, render_template,json
3+
import cv2
4+
from skimage.metrics import structural_similarity as ssim
5+
6+
7+
8+
app = Flask(__name__)
9+
10+
@app.route('/')
11+
def home():
12+
return jsonify({'message':'Welcome to Flask Apis'})
13+
14+
@app.route('/img',methods=['POST'])
15+
def predict():
16+
file1 = request.files['file1']
17+
file2 = request.files['file2']
18+
19+
# Read the images using OpenCV
20+
img1 = cv2.imdecode(np.frombuffer(file1.read(), np.uint8), cv2.IMREAD_COLOR)
21+
img2 = cv2.imdecode(np.frombuffer(file2.read(), np.uint8), cv2.IMREAD_COLOR)
22+
23+
# Resize the images to 256x256 pixels
24+
img1 = cv2.resize(img1, (256, 256))
25+
img2 = cv2.resize(img2, (256, 256))
26+
27+
# Convert the images to grayscale
28+
gray_img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
29+
gray_img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
30+
31+
# Calculate the structural similarity index between the images
32+
score = ssim(gray_img1, gray_img2, full=True)[0]
33+
34+
# Convert the similarity score to a percentage
35+
similarity_percentage = score * 100
36+
37+
# Return the similarity percentage in a JSON response
38+
return jsonify({'similarity_percentage': similarity_percentage})
39+
40+
41+
if __name__ == '__main__':
42+
app.run(debug=True)

0 commit comments

Comments
 (0)