51
51
y = df .pop ("AQI" )
52
52
53
53
54
- x_train , x_test , y_train , y_test = train_test_split (df , y , test_size = 0.2 , random_state = 0 )
54
+ x_train , x_test , y_train , y_test = train_test_split (
55
+ df , y , test_size = 0.2 , random_state = 0 )
55
56
56
57
57
58
model = RandomForestRegressor (max_depth = 50 , random_state = 0 )
58
59
model .fit (x_train , y_train )
59
60
61
+
60
62
def main ():
61
63
st .title ("Air Quality Index Prediction" )
62
64
63
65
st .write ("## User Input Features" )
64
66
65
-
66
67
city = st .selectbox ("City" , df ["City" ].unique ())
67
- pm2_5 = st .slider ("PM2.5" , float (df ["PM2.5" ].min ()), float (df ["PM2.5" ].max ()), float (df ["PM2.5" ].mean ()))
68
- pm10 = st .slider ("PM10" , float (df ["PM10" ].min ()), float (df ["PM10" ].max ()), float (df ["PM10" ].mean ()))
69
- no = st .slider ("NO" , float (df ["NO" ].min ()), float (df ["NO" ].max ()), float (df ["NO" ].mean ()))
70
- no2 = st .slider ("NO2" , float (df ["NO2" ].min ()), float (df ["NO2" ].max ()), float (df ["NO2" ].mean ()))
71
- nox = st .slider ("NOx" , float (df ["NOx" ].min ()), float (df ["NOx" ].max ()), float (df ["NOx" ].mean ()))
72
- nh3 = st .slider ("NH3" , float (df ["NH3" ].min ()), float (df ["NH3" ].max ()), float (df ["NH3" ].mean ()))
73
- co = st .slider ("CO" , float (df ["CO" ].min ()), float (df ["CO" ].max ()), float (df ["CO" ].mean ()))
74
- so2 = st .slider ("SO2" , float (df ["SO2" ].min ()), float (df ["SO2" ].max ()), float (df ["SO2" ].mean ()))
75
- o3 = st .slider ("O3" , float (df ["O3" ].min ()), float (df ["O3" ].max ()), float (df ["O3" ].mean ()))
76
- benzene = st .slider ("Benzene" , float (df ["Benzene" ].min ()), float (df ["Benzene" ].max ()), float (df ["Benzene" ].mean ()))
77
- toluene = st .slider ("Toluene" , float (df ["Toluene" ].min ()), float (df ["Toluene" ].max ()), float (df ["Toluene" ].mean ()))
78
- xylene = st .slider ("Xylene" , float (df ["Xylene" ].min ()), float (df ["Xylene" ].max ()), float (df ["Xylene" ].mean ()))
79
-
80
-
68
+ pm2_5 = st .slider ("PM2.5" , float (df ["PM2.5" ].min ()), float (
69
+ df ["PM2.5" ].max ()), float (df ["PM2.5" ].mean ()))
70
+ pm10 = st .slider ("PM10" , float (df ["PM10" ].min ()), float (
71
+ df ["PM10" ].max ()), float (df ["PM10" ].mean ()))
72
+ no = st .slider ("NO" , float (df ["NO" ].min ()), float (
73
+ df ["NO" ].max ()), float (df ["NO" ].mean ()))
74
+ no2 = st .slider ("NO2" , float (df ["NO2" ].min ()), float (
75
+ df ["NO2" ].max ()), float (df ["NO2" ].mean ()))
76
+ nox = st .slider ("NOx" , float (df ["NOx" ].min ()), float (
77
+ df ["NOx" ].max ()), float (df ["NOx" ].mean ()))
78
+ nh3 = st .slider ("NH3" , float (df ["NH3" ].min ()), float (
79
+ df ["NH3" ].max ()), float (df ["NH3" ].mean ()))
80
+ co = st .slider ("CO" , float (df ["CO" ].min ()), float (
81
+ df ["CO" ].max ()), float (df ["CO" ].mean ()))
82
+ so2 = st .slider ("SO2" , float (df ["SO2" ].min ()), float (
83
+ df ["SO2" ].max ()), float (df ["SO2" ].mean ()))
84
+ o3 = st .slider ("O3" , float (df ["O3" ].min ()), float (
85
+ df ["O3" ].max ()), float (df ["O3" ].mean ()))
86
+ benzene = st .slider ("Benzene" , float (df ["Benzene" ].min ()), float (
87
+ df ["Benzene" ].max ()), float (df ["Benzene" ].mean ()))
88
+ toluene = st .slider ("Toluene" , float (df ["Toluene" ].min ()), float (
89
+ df ["Toluene" ].max ()), float (df ["Toluene" ].mean ()))
90
+ xylene = st .slider ("Xylene" , float (df ["Xylene" ].min ()), float (
91
+ df ["Xylene" ].max ()), float (df ["Xylene" ].mean ()))
92
+
81
93
input_data = pd .DataFrame (
82
94
{
83
95
"City" : [city ],
@@ -98,7 +110,7 @@ def main():
98
110
99
111
st .sidebar .write ("## City Label Mapping" )
100
112
st .sidebar .write (city_mapping )
101
-
113
+
102
114
prediction = model .predict (input_data )
103
115
104
116
st .write ("## Prediction" )
0 commit comments