|
| 1 | +#!/usr/bin/env python3 |
| 2 | +""" |
| 3 | +Test SticklerEvaluationService with actual FCC invoice data. |
| 4 | +
|
| 5 | +This script demonstrates using SticklerEvaluationService to evaluate |
| 6 | +real FCC invoice extraction results against ground truth labels. |
| 7 | +""" |
| 8 | + |
| 9 | +import json |
| 10 | +import os |
| 11 | +import pandas as pd |
| 12 | +from pathlib import Path |
| 13 | +from idp_common.evaluation import SticklerEvaluationService |
| 14 | +from idp_common.models import Section |
| 15 | + |
| 16 | + |
| 17 | +def load_ground_truth_from_csv(csv_path: str, doc_id: str): |
| 18 | + """ |
| 19 | + Load ground truth labels from the refactored labels CSV. |
| 20 | + |
| 21 | + Args: |
| 22 | + csv_path: Path to the CSV file with refactored_labels column |
| 23 | + doc_id: Document ID to look up |
| 24 | + |
| 25 | + Returns: |
| 26 | + Dictionary of ground truth labels |
| 27 | + """ |
| 28 | + df = pd.read_csv(csv_path) |
| 29 | + |
| 30 | + # Find the row for this document |
| 31 | + row = df[df['doc_id'] == doc_id] |
| 32 | + |
| 33 | + if row.empty: |
| 34 | + print(f"Warning: No ground truth found for doc_id: {doc_id}") |
| 35 | + return None |
| 36 | + |
| 37 | + # Parse the refactored_labels JSON |
| 38 | + labels_json = row['refactored_labels'].values[0] |
| 39 | + |
| 40 | + if pd.isna(labels_json): |
| 41 | + print(f"Warning: refactored_labels is empty for doc_id: {doc_id}") |
| 42 | + return None |
| 43 | + |
| 44 | + try: |
| 45 | + labels = json.loads(labels_json) |
| 46 | + return labels |
| 47 | + except json.JSONDecodeError as e: |
| 48 | + print(f"Error parsing refactored_labels JSON: {e}") |
| 49 | + return None |
| 50 | + |
| 51 | + |
| 52 | +def create_fcc_stickler_config(): |
| 53 | + """ |
| 54 | + Create a Stickler configuration for FCC invoices. |
| 55 | + |
| 56 | + Returns: |
| 57 | + Configuration dictionary for SticklerEvaluationService |
| 58 | + """ |
| 59 | + config = { |
| 60 | + "stickler_models": { |
| 61 | + "fcc-invoice": { |
| 62 | + "model_name": "FCCInvoice", |
| 63 | + "match_threshold": 0.7, |
| 64 | + "fields": { |
| 65 | + "agency": { |
| 66 | + "type": "str", |
| 67 | + "comparator": "FuzzyComparator", |
| 68 | + "threshold": 0.8, |
| 69 | + "weight": 2.0, |
| 70 | + }, |
| 71 | + "advertiser": { |
| 72 | + "type": "str", |
| 73 | + "comparator": "FuzzyComparator", |
| 74 | + "threshold": 0.8, |
| 75 | + "weight": 2.0, |
| 76 | + }, |
| 77 | + "gross_total": { |
| 78 | + "type": "str", # Stored as string with commas |
| 79 | + "comparator": "ExactComparator", |
| 80 | + "threshold": 1.0, |
| 81 | + "weight": 3.0, |
| 82 | + }, |
| 83 | + "net_amount_due": { |
| 84 | + "type": "str", # Stored as string with commas |
| 85 | + "comparator": "ExactComparator", |
| 86 | + "threshold": 1.0, |
| 87 | + "weight": 3.0, |
| 88 | + }, |
| 89 | + "line_item__description": { |
| 90 | + "type": "list", |
| 91 | + "comparator": "LevenshteinComparator", |
| 92 | + "threshold": 0.7, |
| 93 | + "weight": 1.5, |
| 94 | + }, |
| 95 | + "line_item__days": { |
| 96 | + "type": "list", |
| 97 | + "comparator": "ExactComparator", |
| 98 | + "threshold": 1.0, |
| 99 | + "weight": 1.0, |
| 100 | + }, |
| 101 | + "line_item__rate": { |
| 102 | + "type": "list", |
| 103 | + "comparator": "ExactComparator", |
| 104 | + "threshold": 1.0, |
| 105 | + "weight": 2.0, |
| 106 | + }, |
| 107 | + "line_item__start_date": { |
| 108 | + "type": "list", |
| 109 | + "comparator": "ExactComparator", |
| 110 | + "threshold": 1.0, |
| 111 | + "weight": 2.0, |
| 112 | + }, |
| 113 | + "line_item__end_date": { |
| 114 | + "type": "list", |
| 115 | + "comparator": "ExactComparator", |
| 116 | + "threshold": 1.0, |
| 117 | + "weight": 2.0, |
| 118 | + }, |
| 119 | + }, |
| 120 | + } |
| 121 | + } |
| 122 | + } |
| 123 | + |
| 124 | + return config |
| 125 | + |
| 126 | + |
| 127 | +def main(): |
| 128 | + """Run the FCC invoice evaluation test.""" |
| 129 | + |
| 130 | + print("=" * 80) |
| 131 | + print("SticklerEvaluationService - FCC Invoice Data Test") |
| 132 | + print("=" * 80) |
| 133 | + |
| 134 | + # Paths |
| 135 | + csv_path = "sr_refactor_labels_5_5_25.csv" |
| 136 | + data_dir = "tmp_data/cli-batch-20251017-154358" |
| 137 | + |
| 138 | + # Check if paths exist |
| 139 | + if not os.path.exists(csv_path): |
| 140 | + print(f"Error: CSV file not found: {csv_path}") |
| 141 | + return |
| 142 | + |
| 143 | + if not os.path.exists(data_dir): |
| 144 | + print(f"Error: Data directory not found: {data_dir}") |
| 145 | + return |
| 146 | + |
| 147 | + # Create Stickler configuration |
| 148 | + print("\n1. Creating Stickler configuration for FCC invoices...") |
| 149 | + config = create_fcc_stickler_config() |
| 150 | + print(" ✓ Configuration created") |
| 151 | + |
| 152 | + # Initialize service |
| 153 | + print("\n2. Initializing SticklerEvaluationService...") |
| 154 | + service = SticklerEvaluationService(config=config) |
| 155 | + print(f" ✓ Service initialized with models: {list(service.stickler_models.keys())}") |
| 156 | + |
| 157 | + # Find a sample document to test |
| 158 | + doc_dirs = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d))] |
| 159 | + |
| 160 | + if not doc_dirs: |
| 161 | + print("Error: No document directories found") |
| 162 | + return |
| 163 | + |
| 164 | + # Use the first document |
| 165 | + sample_doc = doc_dirs[0] |
| 166 | + doc_path = os.path.join(data_dir, sample_doc) |
| 167 | + |
| 168 | + print(f"\n3. Testing with document: {sample_doc}") |
| 169 | + |
| 170 | + # Load the extraction result |
| 171 | + result_path = os.path.join(doc_path, "sections/1/result.json") |
| 172 | + |
| 173 | + if not os.path.exists(result_path): |
| 174 | + print(f"Error: Result file not found: {result_path}") |
| 175 | + return |
| 176 | + |
| 177 | + with open(result_path, 'r') as f: |
| 178 | + result_data = json.load(f) |
| 179 | + |
| 180 | + actual_results = result_data.get('inference_result', {}) |
| 181 | + doc_class = result_data.get('document_class', {}).get('type', 'unknown') |
| 182 | + |
| 183 | + print(f" Document class: {doc_class}") |
| 184 | + print(f" Extracted fields: {list(actual_results.keys())}") |
| 185 | + |
| 186 | + # Load ground truth from CSV |
| 187 | + # Extract doc_id from filename (remove .pdf extension) |
| 188 | + doc_id_from_filename = sample_doc.replace('.pdf', '') |
| 189 | + |
| 190 | + print(f"\n4. Loading ground truth for doc_id: {doc_id_from_filename}") |
| 191 | + ground_truth = load_ground_truth_from_csv(csv_path, doc_id_from_filename) |
| 192 | + |
| 193 | + if ground_truth is None: |
| 194 | + print(" Warning: No ground truth available, using actual results as expected") |
| 195 | + print(" This will show perfect matches (for demonstration purposes)") |
| 196 | + expected_results = actual_results |
| 197 | + else: |
| 198 | + expected_results = ground_truth |
| 199 | + print(f" ✓ Ground truth loaded with {len(expected_results)} fields") |
| 200 | + |
| 201 | + # Create a section |
| 202 | + section = Section( |
| 203 | + section_id="section1", |
| 204 | + classification="fcc-invoice", |
| 205 | + page_ids=["page1"] |
| 206 | + ) |
| 207 | + |
| 208 | + # Evaluate |
| 209 | + print("\n5. Evaluating extraction results...") |
| 210 | + try: |
| 211 | + result = service.evaluate_section( |
| 212 | + section=section, |
| 213 | + expected_results=expected_results, |
| 214 | + actual_results=actual_results |
| 215 | + ) |
| 216 | + |
| 217 | + print(" ✓ Evaluation completed") |
| 218 | + |
| 219 | + # Display results |
| 220 | + print("\n6. Evaluation Results") |
| 221 | + print("-" * 80) |
| 222 | + print(f"Section ID: {result.section_id}") |
| 223 | + print(f"Document Class: {result.document_class}") |
| 224 | + |
| 225 | + if result.metrics: |
| 226 | + print(f"\nMetrics:") |
| 227 | + for metric_name, metric_value in result.metrics.items(): |
| 228 | + print(f" {metric_name:25} {metric_value:.4f}") |
| 229 | + |
| 230 | + if result.attributes: |
| 231 | + print(f"\nAttribute Results ({len(result.attributes)} attributes):") |
| 232 | + print(f"{'Attribute':<30} {'Match':<8} {'Score':<8}") |
| 233 | + print("-" * 50) |
| 234 | + |
| 235 | + matched_count = 0 |
| 236 | + for attr in result.attributes[:20]: # Show first 20 |
| 237 | + match_symbol = "✓" if attr.matched else "✗" |
| 238 | + if attr.matched: |
| 239 | + matched_count += 1 |
| 240 | + print(f"{attr.name:<30} {match_symbol:<8} {attr.score:<8.3f}") |
| 241 | + |
| 242 | + if len(result.attributes) > 20: |
| 243 | + print(f"... and {len(result.attributes) - 20} more attributes") |
| 244 | + |
| 245 | + print(f"\nSummary: {matched_count}/{len(result.attributes)} attributes matched") |
| 246 | + else: |
| 247 | + print("\nNo attributes evaluated (model may not be configured for this class)") |
| 248 | + |
| 249 | + except Exception as e: |
| 250 | + print(f" ✗ Error during evaluation: {str(e)}") |
| 251 | + import traceback |
| 252 | + traceback.print_exc() |
| 253 | + |
| 254 | + print("\n" + "=" * 80) |
| 255 | + print("Test completed!") |
| 256 | + print("=" * 80) |
| 257 | + |
| 258 | + |
| 259 | +if __name__ == "__main__": |
| 260 | + main() |
0 commit comments