Skip to content

Commit 1fb8179

Browse files
Update README.md
Updated to live IG link
1 parent 53c3172 commit 1fb8179

File tree

1 file changed

+16
-31
lines changed

1 file changed

+16
-31
lines changed

README.md

Lines changed: 16 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -10,33 +10,12 @@
1010
- [Sample Cost Table](#sample-cost-table)
1111
- [Third party dependencies disclaimer](#third-party-dependencies-disclaimer)
1212
- [Quick Start Guide](#quick-start-guide)
13-
- [Important Setup Instructions](#️-important-setup-instructions)
14-
- [Option 1: Automated Setup with Makefile (Recommended)](#option-1-automated-setup-with-makefile-recommended)
15-
- [Prerequisites](#prerequisites)
16-
- [How to Create a Hugging Face Token](#how-to-create-a-hugging-face-token)
17-
- [Complete Installation](#complete-installation)
18-
- [Individual Components](#individual-components)
19-
- [Utility Commands](#utility-commands)
20-
- [Option 2: Manual Step-by-Step Setup](#option-2-manual-step-by-step-setup)
21-
- [Step 1: Set Up EKS Cluster](#step-1-set-up-eks-cluster)
22-
- [Step 2: Install Base Infrastructure Components](#step-2-install-base-infrastructure-components)
23-
- [Step 3: Deploy Model Hosting Services](#step-3-deploy-model-hosting-services)
24-
- [Step 4: Set Up Observability](#step-4-set-up-observability)
25-
- [Step 5: Deploy Model Gateway](#step-5-deploy-model-gateway)
26-
- [Deploy Agentic Applications](#deploy-agentic-applications)
27-
- [Multi-Agent RAG with Strands SDK and OpenSearch](#multi-agent-rag-with-strands-sdk-and-opensearch)
28-
- [Key Features](#-key-features)
29-
- [Usage](#️-usage)
30-
- [Option 1: Container Deployment on Kubernetes (Recommended)](#option-1-container-deployment-on-kubernetesrecommended)
31-
- [Option 2: Local Development](#option-2-local-development)
32-
- [Observability & Tracing](#-observability--tracing)
33-
- [Agent Workflows](#-agent-workflows)
34-
- [Extending the System](#-extending-the-system)
35-
- [Monitoring and Observability](#-monitoring-and-observability)
36-
- [Example Use Cases](#-example-use-cases)
37-
- [Architecture Benefits](#-architecture-benefits)
38-
- [Key Improvements](#-key-improvements)
39-
13+
- [Important Setup Instructions](#️-important-setup-instructions)
14+
- [Important Notes](#important-notes)
15+
- [Architecture Benefits](#-architecture-benefits)
16+
- [Key Improvements](#-key-improvements)
17+
- [Notices](#notices)
18+
4019
## Overview
4120
This solution implements a comprehensive, scalable ML inference architecture using Amazon EKS, leveraging both Graviton processors for cost-effective CPU-based inference and GPU instances for accelerated inference. The system provides a complete end-to-end platform for deploying large language models with agentic AI capabilities, including RAG (Retrieval Augmented Generation) and intelligent document processing.
4221

@@ -183,6 +162,10 @@ aws service-quotas get-service-quota --service-code ec2 --quota-code L-1216C47A
183162

184163
**Cost Awareness:** This solution will incur AWS charges. Review the cost breakdown section below and set up billing alerts before deployment.
185164

165+
>NOTE: For detailed instructions on Deployment options for this guidance, running model infrenece and Agentic AI workflows and uninstallation please see
166+
this [Detailed Installation Guide](https://aws-solutions-library-samples.github.io/compute/scalabale-model-inference-and-agentic-ai-on-amazon-eks.html)
167+
168+
<!--
186169
The whole solution is including two parts, Agentic AI platform and Agentic AI application, let us go through the Agentic AI platform firstly
187170
188171
We provide two approaches to set up the Agentic AI platform:
@@ -323,7 +306,6 @@ This installs:
323306
4. Go to "Tracing" menu and set up tracing
324307
5. Record the Public Key (PK) and Secret Key (SK) - you'll need these for the agentic applications
325308
326-
327309
#### Step 5: Deploy Model Gateway
328310
329311
Set up the unified API gateway:
@@ -777,8 +759,11 @@ query = "Analyze the medical documents and create a summary report saved to a fi
777759
result = supervisor_agent(query)
778760
# System will retrieve relevant docs, analyze them, and save results using MCP tools
779761
```
762+
-->
763+
764+
## Important Notes
780765

781-
#### 🔍 Architecture Benefits
766+
### 🔍 Architecture Benefits
782767

783768
1. **Modularity**: Each agent has specific responsibilities
784769
2. **Scalability**: Agents can be scaled independently
@@ -787,15 +772,15 @@ result = supervisor_agent(query)
787772
5. **Observability**: Comprehensive monitoring and tracing via Strands SDK
788773
6. **Standards Compliance**: Uses MCP for tool integration and OpenTelemetry for tracing
789774

790-
#### 🔧 Key Improvements
775+
### 🔧 Key Improvements
791776

792777
##### Unified Architecture
793778
- **Single Codebase**: No separate "enhanced" versions - all functionality is built into the standard agents
794779
- **Built-in Tracing**: OpenTelemetry tracing is automatically enabled through Strands SDK
795780
- **Simplified Deployment**: One main application with all features included
796781
- **Consistent API**: All agents use the same tracing and configuration patterns
797782

798-
##### Enhanced Developer Experience
783+
#### Enhanced Developer Experience
799784
- **Automatic Instrumentation**: No manual trace management required
800785
- **Multiple Export Options**: Console, OTLP, Jaeger, Langfuse support out of the box
801786
- **Environment-based Configuration**: Easy setup through environment variables

0 commit comments

Comments
 (0)