|
| 1 | +using Amazon.DynamoDBv2; |
| 2 | +using Amazon.KeyManagementService; |
| 3 | +using AWS.Cryptography.EncryptionSDK; |
| 4 | +using AWS.Cryptography.KeyStore; |
| 5 | +using AWS.Cryptography.MaterialProviders; |
| 6 | +using Xunit; |
| 7 | + |
| 8 | +/// <summary> |
| 9 | +/// This example demonstrates how to use a shared cache across multiple Hierarchical Keyrings. |
| 10 | +/// With this functionality, users only need to maintain one common shared cache across multiple |
| 11 | +/// Hierarchical Keyrings with different Key Stores instances/KMS Clients/KMS Keys. |
| 12 | +/// |
| 13 | +/// There are three important parameters that users need to carefully set while providing the shared cache: |
| 14 | +/// |
| 15 | +/// 1. Partition ID - Partition ID is an optional parameter provided to the Hierarchical Keyring input, |
| 16 | +/// which distinguishes Cryptographic Material Providers (i.e: Keyrings) writing to a cache. |
| 17 | +/// - If the Partition ID is set and is the same for two Hierarchical Keyrings (or another Material Provider), |
| 18 | +/// they CAN share the same cache entries in the cache. |
| 19 | +/// - If the Partition ID is set and is different for two Hierarchical Keyrings (or another Material Provider), |
| 20 | +/// they CANNOT share the same cache entries in the cache. |
| 21 | +/// - If the Partition ID is not set by the user, it is initialized as a random 16-byte UUID which makes |
| 22 | +/// it unique for every Hierarchical Keyring, and two Hierarchical Keyrings (or another Material Provider) |
| 23 | +/// CANNOT share the same cache entries in the cache. |
| 24 | +/// |
| 25 | +/// 2. Logical Key Store Name - This parameter is set by the user when configuring the Key Store for |
| 26 | +/// the Hierarchical Keyring. This is a logical name for the branch key store. |
| 27 | +/// Suppose you have a physical Key Store (K). You create two instances of K (K1 and K2). Now, you create |
| 28 | +/// two Hierarchical Keyrings (HK1 and HK2) with these Key Store instances (K1 and K2 respectively). |
| 29 | +/// - If you want to share cache entries across these two keyrings, you should set the Logical Key Store Names |
| 30 | +/// for both the Key Store instances (K1 and K2) to be the same. |
| 31 | +/// - If you set the Logical Key Store Names for K1 and K2 to be different, HK1 (which uses Key Store instance K1) |
| 32 | +/// and HK2 (which uses Key Store instance K2) will NOT be able to share cache entries. |
| 33 | +/// |
| 34 | +/// 3. Branch Key ID - Choose an effective Branch Key ID Schema |
| 35 | +/// |
| 36 | +/// This is demonstrated in the example below. |
| 37 | +/// Notice that both K1 and K2 are instances of the same physical Key Store (K). |
| 38 | +/// You MUST NEVER have two different physical Key Stores with the same Logical Key Store Name. |
| 39 | +/// |
| 40 | +/// Important Note: If you have two or more Hierarchy Keyrings with: |
| 41 | +/// - Same Partition ID |
| 42 | +/// - Same Logical Key Store Name of the Key Store for the Hierarchical Keyring |
| 43 | +/// - Same Branch Key ID |
| 44 | +/// then they WILL share the cache entries in the Shared Cache. |
| 45 | +/// Please make sure that you set all of Partition ID, Logical Key Store Name and Branch Key ID |
| 46 | +/// to be the same for two Hierarchical Keyrings if and only if you want them to share cache entries. |
| 47 | +/// |
| 48 | +/// This example first creates a shared cache that you can use across multiple Hierarchical Keyrings. |
| 49 | +/// The example then configures a Hierarchical Keyring (HK1 and HK2) with the shared cache, |
| 50 | +/// a Branch Key ID and two instances (K1 and K2) of the same physical Key Store (K) respectively, |
| 51 | +/// i.e. HK1 with K1 and HK2 with K2. The example demonstrates that if you set the same Partition ID |
| 52 | +/// for HK1 and HK2, the two keyrings can share cache entries. |
| 53 | +/// If you set different Partition ID of the Hierarchical Keyrings, or different |
| 54 | +/// Logical Key Store Names of the Key Store instances, then the keyrings will NOT |
| 55 | +/// be able to share cache entries. |
| 56 | +/// |
| 57 | +/// This example requires access to the DDB Table (K) where you are storing the Branch Keys. This |
| 58 | +/// table must be configured with the following primary key configuration: - Partition key is named |
| 59 | +/// "partition_key" with type (S) - Sort key is named "sort_key" with type (S) |
| 60 | +/// |
| 61 | +/// This example also requires using a KMS Key. You need the following access on this key: |
| 62 | +/// - GenerateDataKeyWithoutPlaintext |
| 63 | +/// - Decrypt |
| 64 | +/// </summary> |
| 65 | +public class SharedCacheAcrossHierarchicalKeyrings |
| 66 | +{ |
| 67 | + // THESE ARE PUBLIC RESOURCES DO NOT USE IN A PRODUCTION ENVIRONMENT |
| 68 | + private static string branchKeyId = "43574aa0-de30-424e-bad4-0b06f6e89478"; |
| 69 | + private static void Run(MemoryStream plaintext) |
| 70 | + { |
| 71 | + // Create the CryptographicMaterialsCache (CMC) to share across multiple Hierarchical Keyrings |
| 72 | + // using the Material Providers Library |
| 73 | + // This CMC takes in: |
| 74 | + // - CacheType |
| 75 | + var materialProviders = new MaterialProviders(new MaterialProvidersConfig()); |
| 76 | + |
| 77 | + var cache = new CacheType { Default = new DefaultCache{EntryCapacity = 100} }; |
| 78 | + |
| 79 | + var cryptographicMaterialsCacheInput = new CreateCryptographicMaterialsCacheInput {Cache = cache}; |
| 80 | + |
| 81 | + var sharedCryptographicMaterialsCache = materialProviders.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput); |
| 82 | + |
| 83 | + // Create a CacheType object for the sharedCryptographicMaterialsCache |
| 84 | + // Note that the `cache` parameter in the Hierarchical Keyring Input takes a `CacheType` as input |
| 85 | + // Here, we pass a `Shared` CacheType that passes an already initialized shared cache |
| 86 | + var sharedCache = new CacheType { Shared = sharedCryptographicMaterialsCache }; |
| 87 | + |
| 88 | + // Instantiate the SDK |
| 89 | + // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt commitment policy, |
| 90 | + // which enforces that this client only encrypts using committing algorithm suites and enforces |
| 91 | + // that this client will only decrypt encrypted messages that were created with a committing |
| 92 | + // algorithm suite. |
| 93 | + // This is the default commitment policy if you build the client with |
| 94 | + // `AwsCrypto.builder().build()` |
| 95 | + // or `AwsCrypto.standard()`. |
| 96 | + var encryptionSDK = new ESDK(new AwsEncryptionSdkConfig()); |
| 97 | + |
| 98 | + // Configure your KeyStore resource keystore1. |
| 99 | + // This SHOULD be the same configuration that you used |
| 100 | + // to initially create and populate your physical KeyStore. |
| 101 | + // Note that ddbTableName keyStoreTableName is the physical Key Store, |
| 102 | + // and keystore1 is instances of this physical Key Store. |
| 103 | + |
| 104 | + // Create an AWS KMS Configuration to use with your KeyStore. |
| 105 | + // The KMS Configuration MUST have the right access to the resources in the KeyStore. |
| 106 | + var kmsConfig = new KMSConfiguration { KmsKeyArn = ExampleUtils.ExampleUtils.GetBranchKeyArn() }; |
| 107 | + |
| 108 | + var keystoreConfig = new KeyStoreConfig |
| 109 | + { |
| 110 | + // Client MUST have permissions to decrypt kmsConfig.KmsKeyArn |
| 111 | + KmsClient = new AmazonKeyManagementServiceClient(), |
| 112 | + KmsConfiguration = kmsConfig, |
| 113 | + DdbTableName = ExampleUtils.ExampleUtils.GetKeyStoreName(), |
| 114 | + DdbClient = new AmazonDynamoDBClient(), |
| 115 | + LogicalKeyStoreName = ExampleUtils.ExampleUtils.GetLogicalKeyStoreName() |
| 116 | + }; |
| 117 | + |
| 118 | + |
| 119 | + var keystore1 = new KeyStore(keystoreConfig); |
| 120 | + |
| 121 | + // Create the Hierarchical Keyring HK1 with Key Store instance K1, partitionId, |
| 122 | + // the shared Cache and the BranchKeyId. |
| 123 | + // Note that we are now providing an already initialized shared cache instead of just mentioning |
| 124 | + // the cache type and the Hierarchical Keyring initializing a cache at initialization. |
| 125 | + |
| 126 | + // partitionId for this example is a random UUID |
| 127 | + var partitionId = "91c1b6a2-6fc3-4539-ad5e-938d597ed730"; |
| 128 | + |
| 129 | + // Please make sure that you read the guidance on how to set Partition ID, Logical Key Store Name and |
| 130 | + // Branch Key ID at the top of this example before creating Hierarchical Keyrings with a Shared Cache |
| 131 | + |
| 132 | + var createKeyringInput1 = new CreateAwsKmsHierarchicalKeyringInput |
| 133 | + { |
| 134 | + KeyStore = keystore1, |
| 135 | + // This branchKeyId you have configured your keyring with MUST be decrypted by the |
| 136 | + // KMS config in the keystore and therefore MUST have the right permissions. |
| 137 | + BranchKeyId = branchKeyId, |
| 138 | + // The value provided to `EntryCapacity` dictates how many branch keys will be held locally |
| 139 | + Cache = sharedCache, |
| 140 | + // This dictates how often we call back to KMS to authorize use of the branch keys |
| 141 | + TtlSeconds = 600, |
| 142 | + PartitionId = partitionId |
| 143 | + }; |
| 144 | + var keyring1 = materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput1); |
| 145 | + |
| 146 | + // Create example encryption context |
| 147 | + var encryptionContext = new Dictionary<string, string>() |
| 148 | + { |
| 149 | + {"encryption", "context"}, |
| 150 | + {"is not", "secret"}, |
| 151 | + {"but adds", "useful metadata"}, |
| 152 | + {"that can help you", "be confident that"}, |
| 153 | + {"the data you are handling", "is what you think it is"} |
| 154 | + }; |
| 155 | + |
| 156 | + // Encrypt the data for encryptionContext using keyring1 |
| 157 | + var encryptInput1 = new EncryptInput |
| 158 | + { |
| 159 | + Plaintext = plaintext, |
| 160 | + Keyring = keyring1, |
| 161 | + EncryptionContext = encryptionContext |
| 162 | + }; |
| 163 | + |
| 164 | + var encryptOutput1 = encryptionSDK.Encrypt(encryptInput1); |
| 165 | + |
| 166 | + |
| 167 | + // Decrypt your encrypted data using the same keyring HK1 you used on encrypt. |
| 168 | + var decryptOutput1 = encryptionSDK.Decrypt(new DecryptInput { |
| 169 | + Ciphertext = encryptOutput1.Ciphertext, |
| 170 | + Keyring = keyring1 } |
| 171 | + ); |
| 172 | + |
| 173 | + // Demonstrate that the decrypted plaintext is identical to the original plaintext. |
| 174 | + var decrypted1 = decryptOutput1.Plaintext; |
| 175 | + Assert.Equal(decrypted1.ToArray(), plaintext.ToArray()); |
| 176 | + |
| 177 | + // Through the above encrypt and decrypt roundtrip, the cache will be populated and |
| 178 | + // the cache entries can be used by another Hierarchical Keyring with the |
| 179 | + // - Same Partition ID |
| 180 | + // - Same Logical Key Store Name of the Key Store for the Hierarchical Keyring |
| 181 | + // - Same Branch Key ID |
| 182 | + |
| 183 | + // Configure your KeyStore resource keystore2. |
| 184 | + // This SHOULD be the same configuration that you used |
| 185 | + // to initially create and populate your physical KeyStore. |
| 186 | + // Note that ddbTableName keyStoreTableName is the physical Key Store, |
| 187 | + // and keystore2 is instances of this physical Key Store. |
| 188 | + |
| 189 | + // Note that for this example, keystore2 is identical to keystore1. |
| 190 | + // You can optionally change configurations like KMS Client or KMS Key ID based |
| 191 | + // on your use-case. |
| 192 | + // Make sure you have the required permissions to use different configurations. |
| 193 | + |
| 194 | + // - If you want to share cache entries across two keyrings HK1 and HK2, |
| 195 | + // you should set the Logical Key Store Names for both |
| 196 | + // Key Store instances (K1 and K2) to be the same. |
| 197 | + // - If you set the Logical Key Store Names for K1 and K2 to be different, |
| 198 | + // HK1 (which uses Key Store instance K1) and HK2 (which uses Key Store |
| 199 | + // instance K2) will NOT be able to share cache entries. |
| 200 | + var keystore2 = new KeyStore(keystoreConfig); |
| 201 | + |
| 202 | + // Create the Hierarchical Keyring HK2 with Key Store instance K2, the shared Cache |
| 203 | + // and the same partitionId and BranchKeyId used in HK1 because we want to share cache entries |
| 204 | + // (and experience cache HITS). |
| 205 | + |
| 206 | + // Please make sure that you read the guidance on how to set Partition ID, Logical Key Store Name and |
| 207 | + // Branch Key ID at the top of this example before creating Hierarchical Keyrings with a Shared Cache |
| 208 | + |
| 209 | + var createKeyringInput2 = new CreateAwsKmsHierarchicalKeyringInput |
| 210 | + { |
| 211 | + KeyStore = keystore2, |
| 212 | + // This branchKeyId you have configured your keyring with MUST be decrypted by the |
| 213 | + // KMS config in the keystore and therefore MUST have the right permissions. |
| 214 | + BranchKeyId = branchKeyId, |
| 215 | + // The value provided to `EntryCapacity` dictates how many branch keys will be held locally |
| 216 | + Cache = sharedCache, |
| 217 | + // This dictates how often we call back to KMS to authorize use of the branch keys |
| 218 | + TtlSeconds = 600, |
| 219 | + PartitionId = partitionId |
| 220 | + }; |
| 221 | + var keyring2 = materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput2); |
| 222 | + |
| 223 | + // This encrypt-decrypt roundtrip with HK2 will experience Cache HITS from previous HK1 roundtrip |
| 224 | + // Encrypt the data for encryptionContext using hierarchicalKeyring2 |
| 225 | + var encryptInput2 = new EncryptInput |
| 226 | + { |
| 227 | + Plaintext = plaintext, |
| 228 | + Keyring = keyring2, |
| 229 | + EncryptionContext = encryptionContext |
| 230 | + }; |
| 231 | + |
| 232 | + var encryptOutput2 = encryptionSDK.Encrypt(encryptInput2); |
| 233 | + |
| 234 | + // Decrypt your encrypted data using the same keyring HK2 you used on encrypt. |
| 235 | + var decryptOutput2 = encryptionSDK.Decrypt(new DecryptInput { |
| 236 | + Ciphertext = encryptOutput2.Ciphertext, |
| 237 | + Keyring = keyring2 } |
| 238 | + ); |
| 239 | + |
| 240 | + // Demonstrate that the decrypted plaintext is identical to the original plaintext. |
| 241 | + var decrypted2 = decryptOutput2.Plaintext; |
| 242 | + Assert.Equal(decrypted2.ToArray(), plaintext.ToArray()); |
| 243 | + } |
| 244 | + |
| 245 | + // We test examples to ensure they remain up-to-date. |
| 246 | + [Fact] |
| 247 | + public void TestAwsKmsHierarchicalKeyringExample() |
| 248 | + { |
| 249 | + Run(ExampleUtils.ExampleUtils.GetPlaintextStream()); |
| 250 | + } |
| 251 | + |
| 252 | +} |
0 commit comments