Skip to content

Commit 39afd73

Browse files
author
AWS
committed
Amazon SageMaker Service Update: Releasing large data support as part of CreateAutoMLJobV2 in SageMaker Autopilot and CreateDomain API for SageMaker Canvas.
1 parent 9561dae commit 39afd73

File tree

2 files changed

+59
-6
lines changed

2 files changed

+59
-6
lines changed
Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
1+
{
2+
"type": "feature",
3+
"category": "Amazon SageMaker Service",
4+
"contributor": "",
5+
"description": "Releasing large data support as part of CreateAutoMLJobV2 in SageMaker Autopilot and CreateDomain API for SageMaker Canvas."
6+
}

services/sagemaker/src/main/resources/codegen-resources/service-2.json

Lines changed: 53 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -139,7 +139,7 @@
139139
{"shape":"ResourceInUse"},
140140
{"shape":"ResourceLimitExceeded"}
141141
],
142-
"documentation":"<p>Creates an Autopilot job also referred to as Autopilot experiment or AutoML job.</p> <note> <p>We recommend using the new versions <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html\">CreateAutoMLJobV2</a> and <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html\">DescribeAutoMLJobV2</a>, which offer backward compatibility.</p> <p> <code>CreateAutoMLJobV2</code> can manage tabular problem types identical to those of its previous version <code>CreateAutoMLJob</code>, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning).</p> <p>Find guidelines about how to migrate a <code>CreateAutoMLJob</code> to <code>CreateAutoMLJobV2</code> in <a href=\"https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2\">Migrate a CreateAutoMLJob to CreateAutoMLJobV2</a>.</p> </note> <p>You can find the best-performing model after you run an AutoML job by calling <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html\">DescribeAutoMLJobV2</a> (recommended) or <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html\">DescribeAutoMLJob</a>.</p>"
142+
"documentation":"<p>Creates an Autopilot job also referred to as Autopilot experiment or AutoML job.</p> <p>An AutoML job in SageMaker is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment.</p> <p>For more information about AutoML jobs, see <a href=\"https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html\">https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html</a> in the SageMaker developer guide.</p> <note> <p>We recommend using the new versions <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html\">CreateAutoMLJobV2</a> and <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html\">DescribeAutoMLJobV2</a>, which offer backward compatibility.</p> <p> <code>CreateAutoMLJobV2</code> can manage tabular problem types identical to those of its previous version <code>CreateAutoMLJob</code>, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning).</p> <p>Find guidelines about how to migrate a <code>CreateAutoMLJob</code> to <code>CreateAutoMLJobV2</code> in <a href=\"https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2\">Migrate a CreateAutoMLJob to CreateAutoMLJobV2</a>.</p> </note> <p>You can find the best-performing model after you run an AutoML job by calling <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html\">DescribeAutoMLJobV2</a> (recommended) or <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html\">DescribeAutoMLJob</a>.</p>"
143143
},
144144
"CreateAutoMLJobV2":{
145145
"name":"CreateAutoMLJobV2",
@@ -153,7 +153,7 @@
153153
{"shape":"ResourceInUse"},
154154
{"shape":"ResourceLimitExceeded"}
155155
],
156-
"documentation":"<p>Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.</p> <note> <p> <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html\">CreateAutoMLJobV2</a> and <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html\">DescribeAutoMLJobV2</a> are new versions of <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html\">CreateAutoMLJob</a> and <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html\">DescribeAutoMLJob</a> which offer backward compatibility.</p> <p> <code>CreateAutoMLJobV2</code> can manage tabular problem types identical to those of its previous version <code>CreateAutoMLJob</code>, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning).</p> <p>Find guidelines about how to migrate a <code>CreateAutoMLJob</code> to <code>CreateAutoMLJobV2</code> in <a href=\"https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2\">Migrate a CreateAutoMLJob to CreateAutoMLJobV2</a>.</p> </note> <p>For the list of available problem types supported by <code>CreateAutoMLJobV2</code>, see <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html\">AutoMLProblemTypeConfig</a>.</p> <p>You can find the best-performing model after you run an AutoML job V2 by calling <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html\">DescribeAutoMLJobV2</a>.</p>"
156+
"documentation":"<p>Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.</p> <p>An AutoML job in SageMaker is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment.</p> <p>For more information about AutoML jobs, see <a href=\"https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html\">https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html</a> in the SageMaker developer guide.</p> <p>AutoML jobs V2 support various problem types such as regression, binary, and multiclass classification with tabular data, text and image classification, time-series forecasting, and fine-tuning of large language models (LLMs) for text generation.</p> <note> <p> <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html\">CreateAutoMLJobV2</a> and <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html\">DescribeAutoMLJobV2</a> are new versions of <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html\">CreateAutoMLJob</a> and <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html\">DescribeAutoMLJob</a> which offer backward compatibility.</p> <p> <code>CreateAutoMLJobV2</code> can manage tabular problem types identical to those of its previous version <code>CreateAutoMLJob</code>, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning).</p> <p>Find guidelines about how to migrate a <code>CreateAutoMLJob</code> to <code>CreateAutoMLJobV2</code> in <a href=\"https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2\">Migrate a CreateAutoMLJob to CreateAutoMLJobV2</a>.</p> </note> <p>For the list of available problem types supported by <code>CreateAutoMLJobV2</code>, see <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html\">AutoMLProblemTypeConfig</a>.</p> <p>You can find the best-performing model after you run an AutoML job V2 by calling <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html\">DescribeAutoMLJobV2</a>.</p>"
157157
},
158158
"CreateCluster":{
159159
"name":"CreateCluster",
@@ -5545,6 +5545,16 @@
55455545
"validation"
55465546
]
55475547
},
5548+
"AutoMLComputeConfig":{
5549+
"type":"structure",
5550+
"members":{
5551+
"EmrServerlessComputeConfig":{
5552+
"shape":"EmrServerlessComputeConfig",
5553+
"documentation":"<p>The configuration for using <a href=\"https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html\"> EMR Serverless</a> to run the AutoML job V2.</p> <p>To allow your AutoML job V2 to automatically initiate a remote job on EMR Serverless when additional compute resources are needed to process large datasets, you need to provide an <code>EmrServerlessComputeConfig</code> object, which includes an <code>ExecutionRoleARN</code> attribute, to the <code>AutoMLComputeConfig</code> of the AutoML job V2 input request.</p> <p>By seamlessly transitioning to EMR Serverless when required, the AutoML job can handle datasets that would otherwise exceed the initially provisioned resources, without any manual intervention from you. </p> <p>EMR Serverless is available for the tabular and time series problem types. We recommend setting up this option for tabular datasets larger than 5 GB and time series datasets larger than 30 GB.</p>"
5554+
}
5555+
},
5556+
"documentation":"<note> <p>This data type is intended for use exclusively by SageMaker Canvas and cannot be used in other contexts at the moment.</p> </note> <p>Specifies the compute configuration for an AutoML job V2.</p>"
5557+
},
55485558
"AutoMLContainerDefinition":{
55495559
"type":"structure",
55505560
"required":[
@@ -5916,7 +5926,7 @@
59165926
},
59175927
"S3OutputPath":{
59185928
"shape":"S3Uri",
5919-
"documentation":"<p>The Amazon S3 output path. Must be 128 characters or less.</p>"
5929+
"documentation":"<p>The Amazon S3 output path. Must be 512 characters or less.</p>"
59205930
}
59215931
},
59225932
"documentation":"<p>The output data configuration.</p>"
@@ -6538,6 +6548,10 @@
65386548
"GenerativeAiSettings":{
65396549
"shape":"GenerativeAiSettings",
65406550
"documentation":"<p>The generative AI settings for the SageMaker Canvas application.</p>"
6551+
},
6552+
"EmrServerlessSettings":{
6553+
"shape":"EmrServerlessSettings",
6554+
"documentation":"<p>The settings for running Amazon EMR Serverless data processing jobs in SageMaker Canvas.</p>"
65416555
}
65426556
},
65436557
"documentation":"<p>The SageMaker Canvas application settings.</p>"
@@ -8548,6 +8562,10 @@
85488562
"DataSplitConfig":{
85498563
"shape":"AutoMLDataSplitConfig",
85508564
"documentation":"<p>This structure specifies how to split the data into train and validation datasets.</p> <p>The validation and training datasets must contain the same headers. For jobs created by calling <code>CreateAutoMLJob</code>, the validation dataset must be less than 2 GB in size.</p> <note> <p>This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.</p> </note>"
8565+
},
8566+
"AutoMLComputeConfig":{
8567+
"shape":"AutoMLComputeConfig",
8568+
"documentation":"<p>Specifies the compute configuration for the AutoML job V2.</p>"
85518569
}
85528570
}
85538571
},
@@ -13092,6 +13110,10 @@
1309213110
"SecurityConfig":{
1309313111
"shape":"AutoMLSecurityConfig",
1309413112
"documentation":"<p>Returns the security configuration for traffic encryption or Amazon VPC settings.</p>"
13113+
},
13114+
"AutoMLComputeConfig":{
13115+
"shape":"AutoMLComputeConfig",
13116+
"documentation":"<p>The compute configuration used for the AutoML job V2.</p>"
1309513117
}
1309613118
}
1309713119
},
@@ -18011,6 +18033,31 @@
1801118033
"max":10,
1801218034
"pattern":"\\d+"
1801318035
},
18036+
"EmrServerlessComputeConfig":{
18037+
"type":"structure",
18038+
"required":["ExecutionRoleARN"],
18039+
"members":{
18040+
"ExecutionRoleARN":{
18041+
"shape":"RoleArn",
18042+
"documentation":"<p>The ARN of the IAM role granting the AutoML job V2 the necessary permissions access policies to list, connect to, or manage EMR Serverless jobs. For detailed information about the required permissions of this role, see \"How to configure AutoML to initiate a remote job on EMR Serverless for large datasets\" in <a href=\"https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html\">Create a regression or classification job for tabular data using the AutoML API</a> or <a href=\"https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-create-experiment-timeseries-forecasting.html#timeseries-forecasting-api-optional-params\">Create an AutoML job for time-series forecasting using the API</a>.</p>"
18043+
}
18044+
},
18045+
"documentation":"<note> <p>This data type is intended for use exclusively by SageMaker Canvas and cannot be used in other contexts at the moment.</p> </note> <p>Specifies the compute configuration for the EMR Serverless job.</p>"
18046+
},
18047+
"EmrServerlessSettings":{
18048+
"type":"structure",
18049+
"members":{
18050+
"ExecutionRoleArn":{
18051+
"shape":"RoleArn",
18052+
"documentation":"<p>The Amazon Resource Name (ARN) of the Amazon Web Services IAM role that is assumed for running Amazon EMR Serverless jobs in SageMaker Canvas. This role should have the necessary permissions to read and write data attached and a trust relationship with EMR Serverless.</p>"
18053+
},
18054+
"Status":{
18055+
"shape":"FeatureStatus",
18056+
"documentation":"<p>Describes whether Amazon EMR Serverless job capabilities are enabled or disabled in the SageMaker Canvas application.</p>"
18057+
}
18058+
},
18059+
"documentation":"<p>The settings for running Amazon EMR Serverless jobs in SageMaker Canvas.</p>"
18060+
},
1801418061
"EmrSettings":{
1801518062
"type":"structure",
1801618063
"members":{
@@ -27037,7 +27084,8 @@
2703727084
"JumpStart",
2703827085
"InferenceRecommender",
2703927086
"Endpoints",
27040-
"Projects"
27087+
"Projects",
27088+
"InferenceOptimization"
2704127089
]
2704227090
},
2704327091
"MlflowVersion":{
@@ -31505,7 +31553,6 @@
3150531553
"type":"structure",
3150631554
"required":[
3150731555
"S3Uri",
31508-
"LocalPath",
3150931556
"S3UploadMode"
3151031557
],
3151131558
"members":{
@@ -31625,7 +31672,7 @@
3162531672
},
3162631673
"InferenceAmiVersion":{
3162731674
"shape":"ProductionVariantInferenceAmiVersion",
31628-
"documentation":"<p>Specifies an option from a collection of preconfigured Amazon Machine Image (AMI) images. Each image is configured by Amazon Web Services with a set of software and driver versions. Amazon Web Services optimizes these configurations for different machine learning workloads.</p> <p>By selecting an AMI version, you can ensure that your inference environment is compatible with specific software requirements, such as CUDA driver versions, Linux kernel versions, or Amazon Web Services Neuron driver versions.</p>"
31675+
"documentation":"<p>Specifies an option from a collection of preconfigured Amazon Machine Image (AMI) images. Each image is configured by Amazon Web Services with a set of software and driver versions. Amazon Web Services optimizes these configurations for different machine learning workloads.</p> <p>By selecting an AMI version, you can ensure that your inference environment is compatible with specific software requirements, such as CUDA driver versions, Linux kernel versions, or Amazon Web Services Neuron driver versions.</p> <p>The AMI version names, and their configurations, are the following:</p> <dl> <dt>al2-ami-sagemaker-inference-gpu-2</dt> <dd> <ul> <li> <p>Accelerator: GPU</p> </li> <li> <p>NVIDIA driver version: 535.54.03</p> </li> <li> <p>CUDA driver version: 12.2</p> </li> <li> <p>Supported instance types: ml.g4dn.*, ml.g5.*, ml.g6.*, ml.p3.*, ml.p4d.*, ml.p4de.*, ml.p5.*</p> </li> </ul> </dd> </dl>"
3162931676
}
3163031677
},
3163131678
"documentation":"<p> Identifies a model that you want to host and the resources chosen to deploy for hosting it. If you are deploying multiple models, tell SageMaker how to distribute traffic among the models by specifying variant weights. For more information on production variants, check <a href=\"https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html\"> Production variants</a>. </p>"

0 commit comments

Comments
 (0)