|
95 | 95 | },
|
96 | 96 | "recommendationId":{
|
97 | 97 | "shape":"RecommendationId",
|
98 |
| - "documentation":"<p>The ID of the recommendation.</p>" |
| 98 | + "documentation":"<p>The ID of the list of recommendations that contains the item the user interacted with. Provide a <code>recommendationId</code> to have Amazon Personalize implicitly record the recommendations you show your user as impressions data. Or provide a <code>recommendationId</code> if you use a metric attribution to measure the impact of recommendations. </p> <p> For more information on recording impressions data, see <a href=\"https://docs.aws.amazon.com/personalize/latest/dg/recording-events.html#putevents-including-impressions-data\">Recording impressions data</a>. For more information on creating a metric attribution see <a href=\"https://docs.aws.amazon.com/personalize/latest/dg/measuring-recommendation-impact.html\">Measuring impact of recommendations</a>. </p>" |
99 | 99 | },
|
100 | 100 | "impression":{
|
101 | 101 | "shape":"Impression",
|
102 |
| - "documentation":"<p>A list of item IDs that represents the sequence of items you have shown the user. For example, <code>[\"itemId1\", \"itemId2\", \"itemId3\"]</code>.</p>" |
| 102 | + "documentation":"<p>A list of item IDs that represents the sequence of items you have shown the user. For example, <code>[\"itemId1\", \"itemId2\", \"itemId3\"]</code>. Provide a list of items to manually record impressions data for an event. For more information on recording impressions data, see <a href=\"https://docs.aws.amazon.com/personalize/latest/dg/recording-events.html#putevents-including-impressions-data\">Recording impressions data</a>. </p>" |
| 103 | + }, |
| 104 | + "metricAttribution":{ |
| 105 | + "shape":"MetricAttribution", |
| 106 | + "documentation":"<p>Contains information about the metric attribution associated with an event. For more information about metric attributions, see <a href=\"https://docs.aws.amazon.com/personalize/latest/dg/measuring-recommendation-impact.html\">Measuring impact of recommendations</a>.</p>" |
103 | 107 | }
|
104 | 108 | },
|
105 |
| - "documentation":"<p>Represents user interaction event information sent using the <code>PutEvents</code> API.</p>" |
| 109 | + "documentation":"<p>Represents user interaction event information sent using the <code>PutEvents</code> API.</p>", |
| 110 | + "sensitive":true |
| 111 | + }, |
| 112 | + "EventAttributionSource":{ |
| 113 | + "type":"string", |
| 114 | + "max":1024, |
| 115 | + "pattern":"^[\\x20-\\x7E]*[\\x21-\\x7E]+[\\x20-\\x7E]*$" |
106 | 116 | },
|
107 | 117 | "EventList":{
|
108 | 118 | "type":"list",
|
|
113 | 123 | "EventPropertiesJSON":{
|
114 | 124 | "type":"string",
|
115 | 125 | "max":1024,
|
116 |
| - "min":1 |
| 126 | + "min":1, |
| 127 | + "sensitive":true |
117 | 128 | },
|
118 | 129 | "FloatType":{"type":"float"},
|
119 | 130 | "Impression":{
|
|
150 | 161 | "ItemId":{
|
151 | 162 | "type":"string",
|
152 | 163 | "max":256,
|
153 |
| - "min":1 |
| 164 | + "min":1, |
| 165 | + "sensitive":true |
154 | 166 | },
|
155 | 167 | "ItemList":{
|
156 | 168 | "type":"list",
|
|
161 | 173 | "ItemProperties":{
|
162 | 174 | "type":"string",
|
163 | 175 | "max":24262,
|
164 |
| - "min":1 |
| 176 | + "min":1, |
| 177 | + "sensitive":true |
| 178 | + }, |
| 179 | + "MetricAttribution":{ |
| 180 | + "type":"structure", |
| 181 | + "required":["eventAttributionSource"], |
| 182 | + "members":{ |
| 183 | + "eventAttributionSource":{ |
| 184 | + "shape":"EventAttributionSource", |
| 185 | + "documentation":"<p>The source of the event, such as a third party.</p>" |
| 186 | + } |
| 187 | + }, |
| 188 | + "documentation":"<p>Contains information about a metric attribution associated with an event. For more information about metric attributions, see <a href=\"https://docs.aws.amazon.com/personalize/latest/dg/measuring-recommendation-impact.html\">Measuring impact of recommendations</a>.</p>" |
165 | 189 | },
|
166 | 190 | "PutEventsRequest":{
|
167 | 191 | "type":"structure",
|
|
270 | 294 | "UserId":{
|
271 | 295 | "type":"string",
|
272 | 296 | "max":256,
|
273 |
| - "min":1 |
| 297 | + "min":1, |
| 298 | + "sensitive":true |
274 | 299 | },
|
275 | 300 | "UserList":{
|
276 | 301 | "type":"list",
|
|
281 | 306 | "UserProperties":{
|
282 | 307 | "type":"string",
|
283 | 308 | "max":4096,
|
284 |
| - "min":1 |
| 309 | + "min":1, |
| 310 | + "sensitive":true |
285 | 311 | }
|
286 | 312 | },
|
287 | 313 | "documentation":"<p>Amazon Personalize can consume real-time user event data, such as <i>stream</i> or <i>click</i> data, and use it for model training either alone or combined with historical data. For more information see <a href=\"https://docs.aws.amazon.com/personalize/latest/dg/recording-events.html\">Recording Events</a>.</p>"
|
|
0 commit comments