Skip to content

Commit e3113ab

Browse files
This release of the SDK has the API and documentation for the createcustommodel API. This feature lets you copy a trained model into Amazon Bedrock for inference.
1 parent df5c584 commit e3113ab

File tree

8 files changed

+22
-117
lines changed

8 files changed

+22
-117
lines changed

generator/ServiceModels/bedrock/bedrock-2023-04-20.docs.json

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
"service": "<p>Describes the API operations for creating, managing, fine-turning, and evaluating Amazon Bedrock models.</p>",
44
"operations": {
55
"BatchDeleteEvaluationJob": "<p>Deletes a batch of evaluation jobs. An evaluation job can only be deleted if it has following status <code>FAILED</code>, <code>COMPLETED</code>, and <code>STOPPED</code>. You can request up to 25 model evaluation jobs be deleted in a single request.</p>",
6-
"CreateCustomModel": "<p>Creates a new custom model in Amazon Bedrock from an existing SageMaker AI-trained Amazon Nova model stored in an Amazon-managed Amazon S3 bucket. After the model is active, you can use it for inference.</p> <p>To use the model for inference, you must purchase Provisioned Throughput for it. You can't use On-demand inference with these custom models. For more information about Provisioned Throughput, see <a href=\"https://docs.aws.amazon.com/bedrock/latest/userguide/prov-throughput.html\">Provisioned Throughput</a>.</p> <p>The model appears in <code>ListCustomModels</code> with a <code>customizationType</code> of <code>imported</code>. To track the status of the new model, you use the <code>GetCustomModel</code> API operation. The model can be in the following states:</p> <ul> <li> <p> <code>Creating</code> - Initial state during validation and registration</p> </li> <li> <p> <code>Active</code> - Model is ready for use in inference</p> </li> <li> <p> <code>Failed</code> - Creation process encountered an error</p> </li> </ul> <p>For more information about creating custom models, including specific model requirements, see <a href=\"https://docs.aws.amazon.com/bedrock/latest/userguide/create-custom-model-from-existing.html\">Import a SageMaker AI-trained Amazon Nova model</a> in the Amazon Bedrock User Guide. </p> <note> <p>You use the <code>CreateCustomModel</code> API to import only SageMaker AI-trained Amazon Nova models. To import open-source models, you use the <a href=\"https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelImportJob.html\">CreateModelImportJob</a>. </p> </note> <p> <b>Related APIs</b> </p> <ul> <li> <p> <a href=\"https://docs.aws.amazon.com/bedrock/latest/APIReference/API_GetCustomModel.html\">GetCustomModel</a> </p> </li> <li> <p> <a href=\"https://docs.aws.amazon.com/bedrock/latest/APIReference/API_ListCustomModels.html\">ListCustomModels</a> </p> </li> <li> <p> <a href=\"https://docs.aws.amazon.com/bedrock/latest/APIReference/API_DeleteCustomModel.html\">DeleteCustomModel</a> </p> </li> </ul>",
6+
"CreateCustomModel": "<p>Creates a new custom model in Amazon Bedrock. After the model is active, you can use it for inference.</p> <p>To use the model for inference, you must purchase Provisioned Throughput for it. You can't use On-demand inference with these custom models. For more information about Provisioned Throughput, see <a href=\"https://docs.aws.amazon.com/bedrock/latest/userguide/prov-throughput.html\">Provisioned Throughput</a>.</p> <p>The model appears in <code>ListCustomModels</code> with a <code>customizationType</code> of <code>imported</code>. To track the status of the new model, you use the <code>GetCustomModel</code> API operation. The model can be in the following states:</p> <ul> <li> <p> <code>Creating</code> - Initial state during validation and registration</p> </li> <li> <p> <code>Active</code> - Model is ready for use in inference</p> </li> <li> <p> <code>Failed</code> - Creation process encountered an error</p> </li> </ul> <p> <b>Related APIs</b> </p> <ul> <li> <p> <a href=\"https://docs.aws.amazon.com/bedrock/latest/APIReference/API_GetCustomModel.html\">GetCustomModel</a> </p> </li> <li> <p> <a href=\"https://docs.aws.amazon.com/bedrock/latest/APIReference/API_ListCustomModels.html\">ListCustomModels</a> </p> </li> <li> <p> <a href=\"https://docs.aws.amazon.com/bedrock/latest/APIReference/API_DeleteCustomModel.html\">DeleteCustomModel</a> </p> </li> </ul>",
77
"CreateEvaluationJob": "<p>Creates an evaluation job.</p>",
88
"CreateGuardrail": "<p>Creates a guardrail to block topics and to implement safeguards for your generative AI applications.</p> <p>You can configure the following policies in a guardrail to avoid undesirable and harmful content, filter out denied topics and words, and remove sensitive information for privacy protection.</p> <ul> <li> <p> <b>Content filters</b> - Adjust filter strengths to block input prompts or model responses containing harmful content.</p> </li> <li> <p> <b>Denied topics</b> - Define a set of topics that are undesirable in the context of your application. These topics will be blocked if detected in user queries or model responses.</p> </li> <li> <p> <b>Word filters</b> - Configure filters to block undesirable words, phrases, and profanity. Such words can include offensive terms, competitor names etc.</p> </li> <li> <p> <b>Sensitive information filters</b> - Block or mask sensitive information such as personally identifiable information (PII) or custom regex in user inputs and model responses.</p> </li> </ul> <p>In addition to the above policies, you can also configure the messages to be returned to the user if a user input or model response is in violation of the policies defined in the guardrail.</p> <p>For more information, see <a href=\"https://docs.aws.amazon.com/bedrock/latest/userguide/guardrails.html\">Amazon Bedrock Guardrails</a> in the <i>Amazon Bedrock User Guide</i>.</p>",
99
"CreateGuardrailVersion": "<p>Creates a version of the guardrail. Use this API to create a snapshot of the guardrail when you are satisfied with a configuration, or to compare the configuration with another version.</p>",
@@ -2496,7 +2496,7 @@
24962496
"ModelDataSource": {
24972497
"base": "<p>The data source of the model to import.</p>",
24982498
"refs": {
2499-
"CreateCustomModelRequest$modelSourceConfig": "<p>The data source for the model. The Amazon S3 URI in the model source must be for the Amazon-managed Amazon S3 bucket containing your model artifacts. SageMaker AI creates this bucket when you run your first SageMaker AI training job.</p>",
2499+
"CreateCustomModelRequest$modelSourceConfig": "<p>The data source for the model. The Amazon S3 URI in the model source must be for the Amazon-managed Amazon S3 bucket containing your model artifacts.</p>",
25002500
"CreateModelImportJobRequest$modelDataSource": "<p>The data source for the imported model.</p>",
25012501
"GetImportedModelResponse$modelDataSource": "<p>The data source for this imported model.</p>",
25022502
"GetModelImportJobResponse$modelDataSource": "<p>The data source for the imported model.</p>"
@@ -3099,7 +3099,7 @@
30993099
}
31003100
},
31013101
"S3DataSource": {
3102-
"base": "<p>The Amazon S3 data source of the model to import. For the <a href=\"https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateCustomModel.html\">CreateCustomModel</a> API operation, you must specify the Amazon S3 URI for the Amazon-managed Amazon S3 bucket containing your model artifacts. SageMaker AI creates this bucket when you run your first SageMaker AI training job.</p>",
3102+
"base": "<p>The Amazon S3 data source of the model to import. </p>",
31033103
"refs": {
31043104
"ModelDataSource$s3DataSource": "<p>The Amazon S3 data source of the model to import.</p>"
31053105
}

generator/ServiceModels/bedrock/bedrock-2023-04-20.normal.json

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@
5151
{"shape":"ServiceQuotaExceededException"},
5252
{"shape":"ThrottlingException"}
5353
],
54-
"documentation":"<p>Creates a new custom model in Amazon Bedrock from an existing SageMaker AI-trained Amazon Nova model stored in an Amazon-managed Amazon S3 bucket. After the model is active, you can use it for inference.</p> <p>To use the model for inference, you must purchase Provisioned Throughput for it. You can't use On-demand inference with these custom models. For more information about Provisioned Throughput, see <a href=\"https://docs.aws.amazon.com/bedrock/latest/userguide/prov-throughput.html\">Provisioned Throughput</a>.</p> <p>The model appears in <code>ListCustomModels</code> with a <code>customizationType</code> of <code>imported</code>. To track the status of the new model, you use the <code>GetCustomModel</code> API operation. The model can be in the following states:</p> <ul> <li> <p> <code>Creating</code> - Initial state during validation and registration</p> </li> <li> <p> <code>Active</code> - Model is ready for use in inference</p> </li> <li> <p> <code>Failed</code> - Creation process encountered an error</p> </li> </ul> <p>For more information about creating custom models, including specific model requirements, see <a href=\"https://docs.aws.amazon.com/bedrock/latest/userguide/create-custom-model-from-existing.html\">Import a SageMaker AI-trained Amazon Nova model</a> in the Amazon Bedrock User Guide. </p> <note> <p>You use the <code>CreateCustomModel</code> API to import only SageMaker AI-trained Amazon Nova models. To import open-source models, you use the <a href=\"https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelImportJob.html\">CreateModelImportJob</a>. </p> </note> <p> <b>Related APIs</b> </p> <ul> <li> <p> <a href=\"https://docs.aws.amazon.com/bedrock/latest/APIReference/API_GetCustomModel.html\">GetCustomModel</a> </p> </li> <li> <p> <a href=\"https://docs.aws.amazon.com/bedrock/latest/APIReference/API_ListCustomModels.html\">ListCustomModels</a> </p> </li> <li> <p> <a href=\"https://docs.aws.amazon.com/bedrock/latest/APIReference/API_DeleteCustomModel.html\">DeleteCustomModel</a> </p> </li> </ul>"
54+
"documentation":"<p>Creates a new custom model in Amazon Bedrock. After the model is active, you can use it for inference.</p> <p>To use the model for inference, you must purchase Provisioned Throughput for it. You can't use On-demand inference with these custom models. For more information about Provisioned Throughput, see <a href=\"https://docs.aws.amazon.com/bedrock/latest/userguide/prov-throughput.html\">Provisioned Throughput</a>.</p> <p>The model appears in <code>ListCustomModels</code> with a <code>customizationType</code> of <code>imported</code>. To track the status of the new model, you use the <code>GetCustomModel</code> API operation. The model can be in the following states:</p> <ul> <li> <p> <code>Creating</code> - Initial state during validation and registration</p> </li> <li> <p> <code>Active</code> - Model is ready for use in inference</p> </li> <li> <p> <code>Failed</code> - Creation process encountered an error</p> </li> </ul> <p> <b>Related APIs</b> </p> <ul> <li> <p> <a href=\"https://docs.aws.amazon.com/bedrock/latest/APIReference/API_GetCustomModel.html\">GetCustomModel</a> </p> </li> <li> <p> <a href=\"https://docs.aws.amazon.com/bedrock/latest/APIReference/API_ListCustomModels.html\">ListCustomModels</a> </p> </li> <li> <p> <a href=\"https://docs.aws.amazon.com/bedrock/latest/APIReference/API_DeleteCustomModel.html\">DeleteCustomModel</a> </p> </li> </ul>"
5555
},
5656
"CreateEvaluationJob":{
5757
"name":"CreateEvaluationJob",
@@ -1456,7 +1456,7 @@
14561456
},
14571457
"modelSourceConfig":{
14581458
"shape":"ModelDataSource",
1459-
"documentation":"<p>The data source for the model. The Amazon S3 URI in the model source must be for the Amazon-managed Amazon S3 bucket containing your model artifacts. SageMaker AI creates this bucket when you run your first SageMaker AI training job.</p>"
1459+
"documentation":"<p>The data source for the model. The Amazon S3 URI in the model source must be for the Amazon-managed Amazon S3 bucket containing your model artifacts.</p>"
14601460
},
14611461
"modelKmsKeyArn":{
14621462
"shape":"KmsKeyArn",
@@ -7773,7 +7773,7 @@
77737773
"documentation":"<p>The URI of the Amazon S3 data source.</p>"
77747774
}
77757775
},
7776-
"documentation":"<p>The Amazon S3 data source of the model to import. For the <a href=\"https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateCustomModel.html\">CreateCustomModel</a> API operation, you must specify the Amazon S3 URI for the Amazon-managed Amazon S3 bucket containing your model artifacts. SageMaker AI creates this bucket when you run your first SageMaker AI training job.</p>"
7776+
"documentation":"<p>The Amazon S3 data source of the model to import. </p>"
77777777
},
77787778
"S3InputFormat":{
77797779
"type":"string",

sdk/src/Services/Bedrock/Generated/Model/CreateCustomModelRequest.cs

Lines changed: 3 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -31,9 +31,8 @@ namespace Amazon.Bedrock.Model
3131
{
3232
/// <summary>
3333
/// Container for the parameters to the CreateCustomModel operation.
34-
/// Creates a new custom model in Amazon Bedrock from an existing SageMaker AI-trained
35-
/// Amazon Nova model stored in an Amazon-managed Amazon S3 bucket. After the model is
36-
/// active, you can use it for inference.
34+
/// Creates a new custom model in Amazon Bedrock. After the model is active, you can use
35+
/// it for inference.
3736
///
3837
///
3938
/// <para>
@@ -62,18 +61,6 @@ namespace Amazon.Bedrock.Model
6261
/// </para>
6362
/// </li> </ul>
6463
/// <para>
65-
/// For more information about creating custom models, including specific model requirements,
66-
/// see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/create-custom-model-from-existing.html">Import
67-
/// a SageMaker AI-trained Amazon Nova model</a> in the Amazon Bedrock User Guide.
68-
/// </para>
69-
/// <note>
70-
/// <para>
71-
/// You use the <c>CreateCustomModel</c> API to import only SageMaker AI-trained Amazon
72-
/// Nova models. To import open-source models, you use the <a href="https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelImportJob.html">CreateModelImportJob</a>.
73-
///
74-
/// </para>
75-
/// </note>
76-
/// <para>
7764
/// <b>Related APIs</b>
7865
/// </para>
7966
/// <ul> <li>
@@ -174,8 +161,7 @@ internal bool IsSetModelName()
174161
/// Gets and sets the property ModelSourceConfig.
175162
/// <para>
176163
/// The data source for the model. The Amazon S3 URI in the model source must be for the
177-
/// Amazon-managed Amazon S3 bucket containing your model artifacts. SageMaker AI creates
178-
/// this bucket when you run your first SageMaker AI training job.
164+
/// Amazon-managed Amazon S3 bucket containing your model artifacts.
179165
/// </para>
180166
/// </summary>
181167
[AWSProperty(Required=true)]

sdk/src/Services/Bedrock/Generated/Model/S3DataSource.cs

Lines changed: 1 addition & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -30,10 +30,7 @@
3030
namespace Amazon.Bedrock.Model
3131
{
3232
/// <summary>
33-
/// The Amazon S3 data source of the model to import. For the <a href="https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateCustomModel.html">CreateCustomModel</a>
34-
/// API operation, you must specify the Amazon S3 URI for the Amazon-managed Amazon S3
35-
/// bucket containing your model artifacts. SageMaker AI creates this bucket when you
36-
/// run your first SageMaker AI training job.
33+
/// The Amazon S3 data source of the model to import.
3734
/// </summary>
3835
public partial class S3DataSource
3936
{

sdk/src/Services/Bedrock/Generated/_bcl/AmazonBedrockClient.cs

Lines changed: 4 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -347,9 +347,8 @@ public virtual BatchDeleteEvaluationJobResponse BatchDeleteEvaluationJob(BatchDe
347347

348348

349349
/// <summary>
350-
/// Creates a new custom model in Amazon Bedrock from an existing SageMaker AI-trained
351-
/// Amazon Nova model stored in an Amazon-managed Amazon S3 bucket. After the model is
352-
/// active, you can use it for inference.
350+
/// Creates a new custom model in Amazon Bedrock. After the model is active, you can use
351+
/// it for inference.
353352
///
354353
///
355354
/// <para>
@@ -378,18 +377,6 @@ public virtual BatchDeleteEvaluationJobResponse BatchDeleteEvaluationJob(BatchDe
378377
/// </para>
379378
/// </li> </ul>
380379
/// <para>
381-
/// For more information about creating custom models, including specific model requirements,
382-
/// see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/create-custom-model-from-existing.html">Import
383-
/// a SageMaker AI-trained Amazon Nova model</a> in the Amazon Bedrock User Guide.
384-
/// </para>
385-
/// <note>
386-
/// <para>
387-
/// You use the <c>CreateCustomModel</c> API to import only SageMaker AI-trained Amazon
388-
/// Nova models. To import open-source models, you use the <a href="https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelImportJob.html">CreateModelImportJob</a>.
389-
///
390-
/// </para>
391-
/// </note>
392-
/// <para>
393380
/// <b>Related APIs</b>
394381
/// </para>
395382
/// <ul> <li>
@@ -451,9 +438,8 @@ public virtual CreateCustomModelResponse CreateCustomModel(CreateCustomModelRequ
451438

452439

453440
/// <summary>
454-
/// Creates a new custom model in Amazon Bedrock from an existing SageMaker AI-trained
455-
/// Amazon Nova model stored in an Amazon-managed Amazon S3 bucket. After the model is
456-
/// active, you can use it for inference.
441+
/// Creates a new custom model in Amazon Bedrock. After the model is active, you can use
442+
/// it for inference.
457443
///
458444
///
459445
/// <para>
@@ -482,18 +468,6 @@ public virtual CreateCustomModelResponse CreateCustomModel(CreateCustomModelRequ
482468
/// </para>
483469
/// </li> </ul>
484470
/// <para>
485-
/// For more information about creating custom models, including specific model requirements,
486-
/// see <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/create-custom-model-from-existing.html">Import
487-
/// a SageMaker AI-trained Amazon Nova model</a> in the Amazon Bedrock User Guide.
488-
/// </para>
489-
/// <note>
490-
/// <para>
491-
/// You use the <c>CreateCustomModel</c> API to import only SageMaker AI-trained Amazon
492-
/// Nova models. To import open-source models, you use the <a href="https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelImportJob.html">CreateModelImportJob</a>.
493-
///
494-
/// </para>
495-
/// </note>
496-
/// <para>
497471
/// <b>Related APIs</b>
498472
/// </para>
499473
/// <ul> <li>

0 commit comments

Comments
 (0)