@@ -613,17 +613,20 @@ def read_sql_query(
613613 ----
614614 `chunksize` argument (Memory Friendly) (i.e batching):
615615
616- Enable the function to return an Iterable of DataFrames instead of a regular DataFrame.
616+ Return an Iterable of DataFrames instead of a regular DataFrame.
617617
618- There are two batching strategies on Wrangler :
618+ There are two batching strategies:
619619
620620 - If **chunksize=True**, a new DataFrame will be returned for each file in the query result.
621621
622- - If **chunked =INTEGER**, Wrangler will iterate on the data by number of rows igual the received INTEGER.
622+ - If **chunksize =INTEGER**, Wrangler will iterate on the data by number of rows igual the received INTEGER.
623623
624- `P.S.` `chunksize=True` if faster and uses less memory while `chunksize=INTEGER` is more precise
624+ `P.S.` `chunksize=True` is faster and uses less memory while `chunksize=INTEGER` is more precise
625625 in number of rows for each Dataframe.
626626
627+ `P.P.S.` If `ctas_approach=False` and `chunksize=True`, you will always receive an interador with a
628+ single DataFrame because regular Athena queries only produces a single output file.
629+
627630 Note
628631 ----
629632 In case of `use_threads=True` the number of threads
@@ -834,17 +837,20 @@ def read_sql_table(
834837 ----
835838 `chunksize` argument (Memory Friendly) (i.e batching):
836839
837- Enable the function to return an Iterable of DataFrames instead of a regular DataFrame.
840+ Return an Iterable of DataFrames instead of a regular DataFrame.
838841
839- There are two batching strategies on Wrangler :
842+ There are two batching strategies:
840843
841844 - If **chunksize=True**, a new DataFrame will be returned for each file in the query result.
842845
843- - If **chunked =INTEGER**, Wrangler will iterate on the data by number of rows igual the received INTEGER.
846+ - If **chunksize =INTEGER**, Wrangler will iterate on the data by number of rows igual the received INTEGER.
844847
845- `P.S.` `chunksize=True` if faster and uses less memory while `chunksize=INTEGER` is more precise
848+ `P.S.` `chunksize=True` is faster and uses less memory while `chunksize=INTEGER` is more precise
846849 in number of rows for each Dataframe.
847850
851+ `P.P.S.` If `ctas_approach=False` and `chunksize=True`, you will always receive an interador with a
852+ single DataFrame because regular Athena queries only produces a single output file.
853+
848854 Note
849855 ----
850856 In case of `use_threads=True` the number of threads
0 commit comments