@@ -52,7 +52,7 @@ class Tracker(object):
5252
5353 Note that parameters and input/output artifacts are saved to SageMaker directly via the
5454 UpdateTrialComponent operation. In contrast metrics (via `log_metric` method) are saved to a file, which is
55- then ingested into SageMaker via a metrics agent _which only runs on training job hosts. As a result any metrics
55+ then ingested into SageMaker via a metrics agent which only runs on training job hosts. As a result any metrics
5656 logged in non-training job host environments will not be ingested into SageMaker.
5757
5858 Parameters:
@@ -495,7 +495,7 @@ def log_precision_recall(
495495 y_scores = [0.1, 0.4, 0.35, 0.8]
496496 no_skill = len(y_true[y_true==1]) / len(y_true)
497497
498- my_tracker._log_precision_recall (y_true, y_scores, no_skill=no_skill)
498+ my_tracker.log_precision_recall (y_true, y_scores, no_skill=no_skill)
499499
500500 Args:
501501 y_true (array): True labels. If labels are not binary then positive_label should be given.
@@ -548,7 +548,7 @@ def log_roc_curve(
548548 """Log a receiver operating characteristic (ROC curve) artifact. You can view the artifact
549549 in the charts tab of the Trial Component UI. If your job is created by a pipeline execution
550550 you can view the artifact by selecting the corresponding step in the pipelines UI.
551- See also `SageMaker Pipelines <https://aws.amazon.com/sagemaker/pipelines/>`_
551+ See also `SageMaker Pipelines <https://aws.amazon.com/sagemaker/pipelines/>`.
552552
553553 Requires sklearn.
554554
@@ -615,7 +615,7 @@ def log_confusion_matrix(
615615
616616
617617 Args:
618- y_true (array): True labels. If labels are not binary then positive_label should be given.
618+ y_true (array): True labels.
619619 y_pred (array): Predicted labels.
620620 title (str, optional): Title of the graph, Defaults to none.
621621 output_artifact (boolean, optional): Determines if the artifact is associated with the
0 commit comments