|
1 | 1 | from pydantic import ConfigDict, Field |
2 | 2 |
|
3 | | -from sagemaker.hyperpod.cli.constants.command_constants import INSTANCE_TYPE_LABEL |
| 3 | +from sagemaker.hyperpod.cli.constants.command_constants import INSTANCE_TYPE_LABEL, NEURON_RESOURCE_LIMIT_KEY, \ |
| 4 | + NVIDIA_GPU_RESOURCE_LIMIT_KEY |
4 | 5 | from sagemaker.hyperpod.training.config.hyperpod_pytorch_job_unified_config import ( |
5 | 6 | _HyperPodPytorchJob, HyperPodPytorchJobStatus |
6 | 7 | ) |
|
20 | 21 | import yaml |
21 | 22 | import logging |
22 | 23 |
|
23 | | -from sagemaker.hyperpod.training.quota_allocation_util import _is_valid, _get_resources_from_compute_quotas, _get_resources_from_instance, _get_limits |
| 24 | +from sagemaker.hyperpod.training.quota_allocation_util import ( |
| 25 | + _is_valid, |
| 26 | + _get_resources_from_compute_quotas, |
| 27 | + _get_resources_from_instance, |
| 28 | + _get_limits, |
| 29 | + _resolve_default_memory_values, |
| 30 | + _set_default_accelerators_val, |
| 31 | + _validate_accelerators_inputs, |
| 32 | + _resolve_default_cpu_values, |
| 33 | + _trim_resource_requests |
| 34 | +) |
24 | 35 |
|
25 | 36 | TRAINING_GROUP = "sagemaker.amazonaws.com" |
26 | 37 | API_VERSION = "v1" |
27 | 38 | PLURAL = "hyperpodpytorchjobs" |
28 | 39 | KIND = "HyperPodPyTorchJob" |
29 | 40 | TRAINING_OPERATOR_NAMESPACE = "aws-hyperpod" |
30 | 41 | TRAINING_OPERATOR_LABEL = "hp-training-control-plane" |
31 | | - |
| 42 | +NVIDIA_RESOURCE_KEY = NVIDIA_GPU_RESOURCE_LIMIT_KEY |
| 43 | +NEURON_RESOURCE_KEY = NEURON_RESOURCE_LIMIT_KEY |
32 | 44 |
|
33 | 45 | class HyperPodPytorchJob(_HyperPodPytorchJob): |
34 | 46 | """HyperPod PyTorch job for distributed training on Amazon SageMaker HyperPod clusters. |
@@ -94,27 +106,64 @@ def _process_replica_resources(cls, data): |
94 | 106 | requests = resources.get('requests', {}) |
95 | 107 | limits = resources.get('limits', {}) |
96 | 108 |
|
| 109 | + accelerators = None |
| 110 | + if requests.get('accelerators'): |
| 111 | + accelerators = int(requests.get('accelerators')) |
| 112 | + elif requests.get(NVIDIA_RESOURCE_KEY): |
| 113 | + accelerators = int(requests.get(NVIDIA_RESOURCE_KEY)) |
| 114 | + elif requests.get(NEURON_RESOURCE_KEY): |
| 115 | + accelerators = int(requests.get(NEURON_RESOURCE_KEY)) |
| 116 | + |
97 | 117 | # Extract resource values |
98 | | - vcpu = float(requests.get('vcpu')) if requests.get('vcpu') else None |
| 118 | + vcpu = None |
| 119 | + if requests.get('cpu'): |
| 120 | + vcpu = float(requests.get('cpu')) |
| 121 | + elif requests.get('vcpu'): |
| 122 | + vcpu = float(requests.get('vcpu')) |
| 123 | + |
| 124 | + vcpu_limit = None |
| 125 | + if limits.get('cpu'): |
| 126 | + vcpu_limit = float(limits.get('cpu')) |
| 127 | + elif limits.get('vcpu'): |
| 128 | + vcpu_limit = float(limits.get('vcpu')) |
| 129 | + |
99 | 130 | memory = cls._extract_numeric_value(requests.get('memory')) |
100 | | - accelerators = int(requests.get('accelerators')) if requests.get('accelerators') else None |
101 | 131 | memory_limit = cls._extract_numeric_value(limits.get('memory')) |
102 | | - vcpu_limit = float(limits.get('vcpu')) if limits.get('vcpu') else None |
103 | | - accelerators_limit = int(limits.get('accelerators')) if limits.get('accelerators') else None |
| 132 | + |
| 133 | + accelerators_limit = None |
| 134 | + if limits.get('accelerators'): |
| 135 | + accelerators_limit = int(limits.get('accelerators')) |
| 136 | + elif limits.get(NVIDIA_RESOURCE_KEY): |
| 137 | + accelerators_limit = int(limits.get(NVIDIA_RESOURCE_KEY)) |
| 138 | + elif limits.get(NEURON_RESOURCE_KEY): |
| 139 | + accelerators_limit = int(limits.get(NEURON_RESOURCE_KEY)) |
| 140 | + |
| 141 | + acc_req, acc_lim = _set_default_accelerators_val(instance_type, accelerators, accelerators_limit) |
| 142 | + _validate_accelerators_inputs(instance_type, acc_req, acc_lim) |
104 | 143 |
|
105 | 144 | # Validate configuration |
106 | | - valid, error = _is_valid(vcpu, memory, accelerators, node_count, instance_type) |
| 145 | + valid, error = _is_valid(vcpu, memory, acc_req, node_count, instance_type) |
107 | 146 | if not valid: |
108 | 147 | raise ValueError(error) |
109 | 148 |
|
110 | 149 | # Calculate resource values |
111 | | - requests_value = (_get_resources_from_compute_quotas(instance_type, vcpu, memory, accelerators) |
112 | | - or _get_resources_from_instance(instance_type, node_count=1)) |
113 | | - limits_value = _get_limits(instance_type, vcpu_limit, memory_limit, accelerators_limit) |
| 150 | + requests_values = _get_resources_from_compute_quotas(instance_type, vcpu, memory, acc_req) |
| 151 | + if requests_values is None: |
| 152 | + requests_values = _get_resources_from_instance(instance_type, node_count=1) |
| 153 | + _trim_resource_requests(instance_type, requests_values) |
| 154 | + if NVIDIA_RESOURCE_KEY in requests_values: |
| 155 | + acc_lim = requests_values[NVIDIA_RESOURCE_KEY] |
| 156 | + elif NEURON_RESOURCE_KEY in requests_values: |
| 157 | + acc_lim = requests_values[NEURON_RESOURCE_KEY] |
| 158 | + |
| 159 | + limits_values = _get_limits(instance_type, vcpu_limit, memory_limit, acc_lim) |
| 160 | + _resolve_default_memory_values(instance_type, requests_values, limits_values) |
| 161 | + _resolve_default_cpu_values(instance_type, requests_values) |
114 | 162 |
|
115 | 163 | # Update data with calculated values |
116 | | - data['template']['spec']['containers'][0]['resources']['requests'] = requests_value |
117 | | - data['template']['spec']['containers'][0]['resources']['limits'] = limits_value |
| 164 | + data['template']['spec']['containers'][0]['resources']['requests'] = requests_values |
| 165 | + data['template']['spec']['containers'][0]['resources']['limits'] = limits_values |
| 166 | + |
118 | 167 | return data |
119 | 168 | except KeyError as e: |
120 | 169 | raise ValueError(f"Missing required configuration key: {str(e)}") |
|
0 commit comments