Skip to content

Commit 0f5c9b5

Browse files
committed
Merge branch 'master' into zwei
2 parents 242f81b + 9b32c19 commit 0f5c9b5

File tree

128 files changed

+3100
-2038
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

128 files changed

+3100
-2038
lines changed

CHANGELOG.md

Lines changed: 92 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,97 @@
11
# Changelog
22

3+
## v1.60.2 (2020-05-29)
4+
5+
### Bug Fixes and Other Changes
6+
7+
* [doc] Added Amazon Components for Kubeflow Pipelines
8+
9+
## v1.60.1.post0 (2020-05-28)
10+
11+
### Documentation Changes
12+
13+
* clarify that entry_point must be in the root of source_dir (if applicable)
14+
15+
## v1.60.1 (2020-05-27)
16+
17+
### Bug Fixes and Other Changes
18+
19+
* refactor the navigation
20+
21+
### Documentation Changes
22+
23+
* fix undoc directive; removes extra tabs
24+
25+
## v1.60.0.post0 (2020-05-26)
26+
27+
### Documentation Changes
28+
29+
* remove some duplicated documentation from main README
30+
* fix TF requirements.txt documentation
31+
32+
## v1.60.0 (2020-05-25)
33+
34+
### Features
35+
36+
* support TensorFlow training 2.2
37+
38+
### Bug Fixes and Other Changes
39+
40+
* blacklist unknown xgboost image versions
41+
* use format strings instead of os.path.join for S3 URI in S3Downloader
42+
43+
### Documentation Changes
44+
45+
* consolidate framework version and image information
46+
47+
## v1.59.0 (2020-05-21)
48+
49+
### Features
50+
51+
* MXNet elastic inference support
52+
53+
### Bug Fixes and Other Changes
54+
55+
* add Batch Transform data processing options to Airflow config
56+
* add v2 warning messages
57+
* don't try to use local output path for KMS key in Local Mode
58+
59+
### Documentation Changes
60+
61+
* add instructions for how to enable 'local code' for Local Mode
62+
63+
## v1.58.4 (2020-05-20)
64+
65+
### Bug Fixes and Other Changes
66+
67+
* update AutoML default max_candidate value to use the service default
68+
* add describe_transform_job in session class
69+
70+
### Documentation Changes
71+
72+
* clarify support for requirements.txt in Tensorflow docs
73+
74+
### Testing and Release Infrastructure
75+
76+
* wait for DisassociateTrialComponent to take effect in experiment integ test cleanup
77+
78+
## v1.58.3 (2020-05-19)
79+
80+
### Bug Fixes and Other Changes
81+
82+
* update DatasetFormat key name for sagemakerCaptureJson
83+
84+
### Documentation Changes
85+
86+
* update Processing job max_runtime_in_seconds docstring
87+
88+
## v1.58.2.post0 (2020-05-18)
89+
90+
### Documentation Changes
91+
92+
* specify S3 source_dir needs to point to a tar file
93+
* update PyTorch BYOM topic
94+
395
## v1.58.2 (2020-05-13)
496

597
### Bug Fixes and Other Changes

README.rst

Lines changed: 26 additions & 211 deletions
Original file line numberDiff line numberDiff line change
@@ -34,36 +34,36 @@ You can also train and deploy models with **Amazon algorithms**,
3434
which are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training.
3535
If you have **your own algorithms** built into SageMaker compatible Docker containers, you can train and host models using these as well.
3636

37-
For detailed API reference please go to: `Read the Docs <https://sagemaker.readthedocs.io>`_
37+
For detailed documentation, including the API reference, see `Read the Docs <https://sagemaker.readthedocs.io>`_.
3838

3939
Table of Contents
4040
-----------------
4141

42-
1. `Installing SageMaker Python SDK <#installing-the-sagemaker-python-sdk>`__
43-
2. `Using the SageMaker Python SDK <https://sagemaker.readthedocs.io/en/stable/overview.html>`__
44-
3. `MXNet SageMaker Estimators <#mxnet-sagemaker-estimators>`__
45-
4. `TensorFlow SageMaker Estimators <#tensorflow-sagemaker-estimators>`__
46-
5. `Chainer SageMaker Estimators <#chainer-sagemaker-estimators>`__
47-
6. `PyTorch SageMaker Estimators <#pytorch-sagemaker-estimators>`__
48-
7. `Scikit-learn SageMaker Estimators <#scikit-learn-sagemaker-estimators>`__
49-
8. `XGBoost SageMaker Estimators <#xgboost-sagemaker-estimators>`__
50-
9. `SageMaker Reinforcement Learning Estimators <#sagemaker-reinforcement-learning-estimators>`__
51-
10. `SageMaker SparkML Serving <#sagemaker-sparkml-serving>`__
52-
11. `AWS SageMaker Estimators <#aws-sagemaker-estimators>`__
53-
12. `Using SageMaker AlgorithmEstimators <https://sagemaker.readthedocs.io/en/stable/overview.html#using-sagemaker-algorithmestimators>`__
54-
13. `Consuming SageMaker Model Packages <https://sagemaker.readthedocs.io/en/stable/overview.html#consuming-sagemaker-model-packages>`__
55-
14. `BYO Docker Containers with SageMaker Estimators <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-docker-containers-with-sagemaker-estimators>`__
56-
15. `SageMaker Automatic Model Tuning <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-automatic-model-tuning>`__
57-
16. `SageMaker Batch Transform <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-batch-transform>`__
58-
17. `Secure Training and Inference with VPC <https://sagemaker.readthedocs.io/en/stable/overview.html#secure-training-and-inference-with-vpc>`__
59-
18. `BYO Model <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-model>`__
60-
19. `Inference Pipelines <https://sagemaker.readthedocs.io/en/stable/overview.html#inference-pipelines>`__
61-
20. `Amazon SageMaker Operators for Kubernetes <#amazon-sagemaker-operators-for-kubernetes>`__
62-
21. `Amazon SageMaker Operators in Apache Airflow <#sagemaker-workflow>`__
63-
22. `SageMaker Autopilot <#sagemaker-autopilot>`__
64-
23. `Model Monitoring <#amazon-sagemaker-model-monitoring>`__
65-
24. `SageMaker Debugger <#amazon-sagemaker-debugger>`__
66-
25. `SageMaker Processing <#amazon-sagemaker-processing>`__
42+
#. `Installing SageMaker Python SDK <#installing-the-sagemaker-python-sdk>`__
43+
#. `Using the SageMaker Python SDK <https://sagemaker.readthedocs.io/en/stable/overview.html>`__
44+
#. `Using MXNet <https://sagemaker.readthedocs.io/en/stable/using_mxnet.html>`__
45+
#. `Using TensorFlow <https://sagemaker.readthedocs.io/en/stable/using_tf.html>`__
46+
#. `Using Chainer <https://sagemaker.readthedocs.io/en/stable/using_chainer.html>`__
47+
#. `Using PyTorch <https://sagemaker.readthedocs.io/en/stable/using_pytorch.html>`__
48+
#. `Using Scikit-learn <https://sagemaker.readthedocs.io/en/stable/using_sklearn.html>`__
49+
#. `Using XGBoost <https://sagemaker.readthedocs.io/en/stable/using_xgboost.html>`__
50+
#. `SageMaker Reinforcement Learning Estimators <https://sagemaker.readthedocs.io/en/stable/using_rl.html>`__
51+
#. `SageMaker SparkML Serving <#sagemaker-sparkml-serving>`__
52+
#. `Amazon SageMaker Built-in Algorithm Estimators <src/sagemaker/amazon/README.rst>`__
53+
#. `Using SageMaker AlgorithmEstimators <https://sagemaker.readthedocs.io/en/stable/overview.html#using-sagemaker-algorithmestimators>`__
54+
#. `Consuming SageMaker Model Packages <https://sagemaker.readthedocs.io/en/stable/overview.html#consuming-sagemaker-model-packages>`__
55+
#. `BYO Docker Containers with SageMaker Estimators <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-docker-containers-with-sagemaker-estimators>`__
56+
#. `SageMaker Automatic Model Tuning <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-automatic-model-tuning>`__
57+
#. `SageMaker Batch Transform <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-batch-transform>`__
58+
#. `Secure Training and Inference with VPC <https://sagemaker.readthedocs.io/en/stable/overview.html#secure-training-and-inference-with-vpc>`__
59+
#. `BYO Model <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-model>`__
60+
#. `Inference Pipelines <https://sagemaker.readthedocs.io/en/stable/overview.html#inference-pipelines>`__
61+
#. `Amazon SageMaker Operators for Kubernetes <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_operators_for_kubernetes.html>`__
62+
#. `Amazon SageMaker Operators in Apache Airflow <https://sagemaker.readthedocs.io/en/stable/using_workflow.html>`__
63+
#. `SageMaker Autopilot <src/sagemaker/automl/README.rst>`__
64+
#. `Model Monitoring <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_monitoring.html>`__
65+
#. `SageMaker Debugger <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_debugger.html>`__
66+
#. `SageMaker Processing <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_processing.html>`__
6767

6868

6969
Installing the SageMaker Python SDK
@@ -197,120 +197,6 @@ Preview the site with a Python web server:
197197

198198
View the website by visiting http://localhost:8000
199199

200-
201-
MXNet SageMaker Estimators
202-
--------------------------
203-
204-
By using MXNet SageMaker Estimators, you can train and host MXNet models on Amazon SageMaker.
205-
206-
Supported versions of MXNet: ``0.12.1``, ``1.0.0``, ``1.1.0``, ``1.2.1``, ``1.3.0``, ``1.4.0``, ``1.4.1``, ``1.6.0``.
207-
208-
Supported versions of MXNet for Elastic Inference: ``1.3.0``, ``1.4.0``, ``1.4.1``.
209-
210-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
211-
212-
For more information, see `Using MXNet with the SageMaker Python SDK`_.
213-
214-
.. _Using MXNet with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_mxnet.html
215-
216-
217-
TensorFlow SageMaker Estimators
218-
-------------------------------
219-
220-
By using TensorFlow SageMaker Estimators, you can train and host TensorFlow models on Amazon SageMaker.
221-
222-
Supported versions of TensorFlow: ``1.4.1``, ``1.5.0``, ``1.6.0``, ``1.7.0``, ``1.8.0``, ``1.9.0``, ``1.10.0``, ``1.11.0``, ``1.12.0``, ``1.13.1``, ``1.14.0``, ``1.15.0``, ``1.15.2``, ``2.0.0``, ``2.0.1``, ``2.1.0``.
223-
224-
Supported versions of TensorFlow for Elastic Inference: ``1.11.0``, ``1.12.0``, ``1.13.1``, ``1.14.0``, ``1.15.0``, ``2.0.0``.
225-
226-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
227-
228-
For more information, see `Using TensorFlow with the SageMaker Python SDK`_.
229-
230-
.. _Using TensorFlow with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_tf.html
231-
232-
233-
Chainer SageMaker Estimators
234-
----------------------------
235-
236-
By using Chainer SageMaker Estimators, you can train and host Chainer models on Amazon SageMaker.
237-
238-
Supported versions of Chainer: ``4.0.0``, ``4.1.0``, ``5.0.0``.
239-
240-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
241-
242-
For more information about Chainer, see https://github.com/chainer/chainer.
243-
244-
For more information about Chainer SageMaker Estimators, see `Using Chainer with the SageMaker Python SDK`_.
245-
246-
.. _Using Chainer with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_chainer.html
247-
248-
249-
PyTorch SageMaker Estimators
250-
----------------------------
251-
252-
With PyTorch SageMaker Estimators, you can train and host PyTorch models on Amazon SageMaker.
253-
254-
Supported versions of PyTorch: ``0.4.0``, ``1.0.0``, ``1.1.0``, ``1.2.0``, ``1.3.1``, ``1.4.0``, ``1.5.0``.
255-
256-
Supported versions of PyTorch for Elastic Inference: ``1.3.1``.
257-
258-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
259-
260-
For more information about PyTorch, see https://github.com/pytorch/pytorch.
261-
262-
For more information about PyTorch SageMaker Estimators, see `Using PyTorch with the SageMaker Python SDK`_.
263-
264-
.. _Using PyTorch with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_pytorch.html
265-
266-
267-
Scikit-learn SageMaker Estimators
268-
---------------------------------
269-
270-
With Scikit-learn SageMaker Estimators, you can train and host Scikit-learn models on Amazon SageMaker.
271-
272-
Supported versions of Scikit-learn: ``0.20.0``.
273-
274-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
275-
276-
For more information about Scikit-learn, see https://scikit-learn.org/stable/
277-
278-
For more information about Scikit-learn SageMaker Estimators, see `Using Scikit-learn with the SageMaker Python SDK`_.
279-
280-
.. _Using Scikit-learn with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_sklearn.html
281-
282-
XGBoost SageMaker Estimators
283-
----------------------------
284-
285-
With XGBoost SageMaker Estimators, you can train and host XGBoost models on Amazon SageMaker.
286-
287-
Supported versions of XGBoost: ``0.90-1``.
288-
289-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
290-
291-
For more information about XGBoost, see https://xgboost.readthedocs.io/en/latest/
292-
293-
For more information about XGBoost SageMaker Estimators, see `Using XGBoost with the SageMaker Python SDK`_.
294-
295-
.. _Using XGBoost with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_xgboost.html
296-
297-
298-
SageMaker Reinforcement Learning Estimators
299-
-------------------------------------------
300-
301-
With Reinforcement Learning (RL) Estimators, you can use reinforcement learning to train models on Amazon SageMaker.
302-
303-
Supported versions of Coach: ``0.10.1``, ``0.11.1`` with TensorFlow, ``0.11.0`` with TensorFlow or MXNet.
304-
For more information about Coach, see https://github.com/NervanaSystems/coach
305-
306-
Supported versions of Ray: ``0.5.3``, ``0.6.5`` with TensorFlow.
307-
For more information about Ray, see https://github.com/ray-project/ray
308-
309-
For more information about SageMaker RL Estimators, see `SageMaker Reinforcement Learning Estimators`_.
310-
311-
.. _SageMaker Reinforcement Learning Estimators: src/sagemaker/rl/README.rst
312-
313-
314200
SageMaker SparkML Serving
315201
-------------------------
316202

@@ -343,74 +229,3 @@ For more information about the different ``content-type`` and ``Accept`` formats
343229
``schema`` that SageMaker SparkML Serving recognizes, please see `SageMaker SparkML Serving Container`_.
344230

345231
.. _SageMaker SparkML Serving Container: https://github.com/aws/sagemaker-sparkml-serving-container
346-
347-
AWS SageMaker Estimators
348-
------------------------
349-
Amazon SageMaker provides several built-in machine learning algorithms that you can use to solve a variety of problems.
350-
351-
The full list of algorithms is available at: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
352-
353-
The SageMaker Python SDK includes estimator wrappers for the AWS K-means, Principal Components Analysis (PCA), Linear Learner, Factorization Machines,
354-
Latent Dirichlet Allocation (LDA), Neural Topic Model (NTM), Random Cut Forest, k-nearest neighbors (k-NN), Object2Vec, and IP Insights algorithms.
355-
356-
For more information, see `AWS SageMaker Estimators and Models`_.
357-
358-
.. _AWS SageMaker Estimators and Models: src/sagemaker/amazon/README.rst
359-
360-
Amazon SageMaker Operators for Kubernetes
361-
-----------------------------------------
362-
363-
You can use Amazon SageMaker Operators for Kubernetes to optimize hyperparameters for a given model, run batch transform jobs over existing models, and set up inference endpoints.
364-
365-
For more information, see `Amazon SageMaker Operators for Kubernetes`_.
366-
367-
.. _Amazon SageMaker Operators for Kubernetes: https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_operators_for_kubernetes.html
368-
369-
Amazon SageMaker Operators in Apache Airflow
370-
--------------------------------------------
371-
372-
You can use Apache Airflow to author, schedule and monitor SageMaker workflow.
373-
374-
For more information, see `Amazon SageMaker Operators in Apache Airflow`_.
375-
376-
.. _Amazon SageMaker Operators in Apache Airflow: https://sagemaker.readthedocs.io/en/stable/using_workflow.html
377-
378-
SageMaker Autopilot
379-
-------------------
380-
381-
Amazon SageMaker Autopilot is an automated machine learning solution (commonly referred to as "AutoML") for tabular
382-
datasets. It automatically trains and tunes the best machine learning models for classification or regression based
383-
on your data, and hosts a series of models on an Inference Pipeline.
384-
385-
For more information about SageMaker Autopilot, see `SageMaker Autopilot`_.
386-
387-
.. _SageMaker Autopilot: src/sagemaker/automl/README.rst
388-
389-
Amazon SageMaker Model Monitoring
390-
---------------------------------
391-
392-
You can use Amazon SageMaker Model Monitoring to automatically detect concept drift by monitoring your machine learning models.
393-
394-
For more information, see `Amazon SageMaker Model Monitoring`_.
395-
396-
.. _Amazon SageMaker Model Monitoring: https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_monitoring.html
397-
398-
Amazon SageMaker Debugger
399-
-------------------------
400-
401-
You can use Amazon SageMaker Debugger to automatically detect anomalies while training your machine learning models.
402-
403-
For more information, see `Amazon SageMaker Debugger`_.
404-
405-
.. _Amazon SageMaker Debugger: https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_debugger.html
406-
407-
408-
Amazon SageMaker Processing
409-
---------------------------------
410-
411-
You can use Amazon SageMaker Processing to perform data processing tasks such as data pre- and post-processing, feature engineering, data validation, and model evaluation
412-
413-
414-
For more information, see `Amazon SageMaker Processing`_.
415-
416-
.. _Amazon SageMaker Processing: https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_processing.html

VERSION

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
1.58.3.dev0
1+
1.60.3.dev0

doc/airflow/index.rst

Lines changed: 15 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,15 @@
1+
#################
2+
Airflow Workflows
3+
#################
4+
5+
SageMaker APIs to export configurations for creating and managing Airflow workflows.
6+
7+
.. toctree::
8+
:maxdepth: 1
9+
10+
using_workflow
11+
12+
.. toctree::
13+
:maxdepth: 2
14+
15+
sagemaker.workflow.airflow
File renamed without changes.
File renamed without changes.
File renamed without changes.

doc/algorithms/index.rst

Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,20 @@
1+
######################
2+
First-Party Algorithms
3+
######################
4+
5+
Amazon SageMaker provides implementations of some common machine learning algorithms optimized for GPU architecture and massive datasets.
6+
7+
.. toctree::
8+
:maxdepth: 2
9+
10+
sagemaker.amazon.amazon_estimator
11+
factorization_machines
12+
ipinsights
13+
kmeans
14+
knn
15+
lda
16+
linear_learner
17+
ntm
18+
object2vec
19+
pca
20+
randomcutforest
File renamed without changes.
File renamed without changes.

0 commit comments

Comments
 (0)