@@ -238,7 +238,7 @@ def train(self, image, input_mode, input_config, role, job_name, output_config,
238238        LOGGER .debug ('train request: {}' .format (json .dumps (train_request , indent = 4 )))
239239        self .sagemaker_client .create_training_job (** train_request )
240240
241-     def  create_model (self , name , role , primary_container ,  supplemental_containers = None ):
241+     def  create_model (self , name , role , primary_container ):
242242        """Create an Amazon SageMaker ``Model``. 
243243
244244        Specify the S3 location of the model artifacts and Docker image containing 
@@ -253,36 +253,27 @@ def create_model(self, name, role, primary_container, supplemental_containers=No
253253            primary_container (str or dict[str, str]): Docker image which defines the inference code. 
254254                You can also specify the return value of ``sagemaker.container_def()``, which is used to create 
255255                more advanced container configurations, including model containers which need artifacts from S3. 
256-             supplemental_containers (list[str or dict[str, str]]): List of Docker images which define 
257-                 additional containers that need to be run in addition to the primary container (default: None). 
258-                 You can also specify the return values of ``sagemaker.container_def()``, which the API uses to create 
259-                 more advanced container configurations, including model containers which need artifacts from S3. 
260256
261257        Returns: 
262258            str: Name of the Amazon SageMaker ``Model`` created. 
263259        """ 
264260        role  =  self .expand_role (role )
265261        primary_container  =  _expand_container_def (primary_container )
266-         if  supplemental_containers  is  None :
267-             supplemental_containers  =  []
268-         supplemental_containers  =  [_expand_container_def (sc ) for  sc  in  supplemental_containers ]
269262        LOGGER .info ('Creating model with name: {}' .format (name ))
270263        LOGGER .debug ("create_model request: {}" .format ({
271264            'name' : name ,
272265            'role' : role ,
273-             'primary_container' : primary_container ,
274-             'supplemental_containers' : supplemental_containers 
266+             'primary_container' : primary_container 
275267        }))
276268
277269        self .sagemaker_client .create_model (ModelName = name ,
278270                                           PrimaryContainer = primary_container ,
279-                                            SupplementalContainers = supplemental_containers ,
280271                                           ExecutionRoleArn = role )
281272
282273        return  name 
283274
284275    def  create_model_from_job (self , training_job_name , name = None , role = None , primary_container_image = None ,
285-                               model_data_url = None , env = {},  supplemental_containers = None ):
276+                               model_data_url = None , env = {}):
286277        """Create an Amazon SageMaker ``Model`` from a SageMaker Training Job. 
287278
288279        Args: 
@@ -296,8 +287,6 @@ def create_model_from_job(self, training_job_name, name=None, role=None, primary
296287            model_data_url (str): S3 location of the model data (default: None). If None, defaults to 
297288                the ``ModelS3Artifacts`` of ``training_job_name``. 
298289            env (dict[string,string]): Model environment variables (default: {}). 
299-             supplemental_containers (list[dict[str, str]]): A list of supplemental Docker containers 
300-                 (default: None). Defines the ``SupplementalContainers`` property on the created ``Model``. 
301290
302291        Returns: 
303292            str: The name of the created ``Model``. 
@@ -309,7 +298,7 @@ def create_model_from_job(self, training_job_name, name=None, role=None, primary
309298            primary_container_image  or  training_job ['AlgorithmSpecification' ]['TrainingImage' ],
310299            model_data_url = model_data_url  or  training_job ['ModelArtifacts' ]['S3ModelArtifacts' ],
311300            env = env )
312-         return  self .create_model (name , role , primary_container ,  supplemental_containers )
301+         return  self .create_model (name , role , primary_container )
313302
314303    def  create_endpoint_config (self , name , model_name , initial_instance_count , instance_type ):
315304        """Create an Amazon SageMaker endpoint configuration. 
0 commit comments