@@ -4,10 +4,9 @@ SageMaker PyTorch Estimators and Models
44
55With PyTorch Estimators and Models, you can train and host PyTorch models on Amazon SageMaker.
66
7- Supported versions of PyTorch: ``0.4.0 ``, ``1.0.0.dev `` ("Preview") .
7+ Supported versions of PyTorch: ``0.4.0 ``, ``1.0.0 `` .
88
9- You can try the "Preview" version of PyTorch by specifying ``1.0.0.dev `` for ``framework_version `` when creating your PyTorch estimator.
10- This will ensure you're using the latest version of ``torch-nightly ``.
9+ We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
1110
1211You can visit the PyTorch repository at https://github.com/pytorch/pytorch.
1312
@@ -49,7 +48,7 @@ You can then setup a ``PyTorch`` Estimator with keyword arguments to point to th
4948 role = ' SageMakerRole' ,
5049 train_instance_type = ' ml.p3.2xlarge' ,
5150 train_instance_count = 1 ,
52- framework_version = ' 0.4 .0' )
51+ framework_version = ' 1.0 .0' )
5352
5453 After that, you simply tell the estimator to start a training job and provide an S3 URL
5554that is the path to your training data within Amazon S3:
@@ -137,7 +136,7 @@ directories ('train' and 'test').
137136 pytorch_estimator = PyTorch(' pytorch-train.py' ,
138137 train_instance_type = ' ml.p3.2xlarge' ,
139138 train_instance_count = 1 ,
140- framework_version = ' 0.4 .0' ,
139+ framework_version = ' 1.0 .0' ,
141140 hyperparameters = {' epochs' : 20 , ' batch-size' : 64 , ' learning-rate' : 0.1 })
142141 pytorch_estimator.fit({' train' : ' s3://my-data-bucket/path/to/my/training/data' ,
143142 ' test' : ' s3://my-data-bucket/path/to/my/test/data' })
@@ -338,7 +337,7 @@ operation.
338337 pytorch_estimator = PyTorch(entry_point = ' train_and_deploy.py' ,
339338 train_instance_type = ' ml.p3.2xlarge' ,
340339 train_instance_count = 1 ,
341- framework_version = ' 0.4 .0' )
340+ framework_version = ' 1.0 .0' )
342341 pytorch_estimator.fit(' s3://my_bucket/my_training_data/' )
343342
344343 # Deploy my estimator to a SageMaker Endpoint and get a Predictor
@@ -675,21 +674,21 @@ When training and deploying training scripts, SageMaker runs your Python script
675674libraries installed. When creating the Estimator and calling deploy to create the SageMaker Endpoint, you can control
676675the environment your script runs in.
677676
678- SageMaker runs PyTorch Estimator scripts in either Python 2.7 or Python 3.5 . You can select the Python version by
677+ SageMaker runs PyTorch Estimator scripts in either Python 2 or Python 3. You can select the Python version by
679678passing a ``py_version `` keyword arg to the PyTorch Estimator constructor. Setting this to `py3 ` (the default) will cause your
680679training script to be run on Python 3.5. Setting this to `py2 ` will cause your training script to be run on Python 2.7
681680This Python version applies to both the Training Job, created by fit, and the Endpoint, created by deploy.
682681
683682The PyTorch Docker images have the following dependencies installed:
684683
685684+-----------------------------+---------------+-------------------+
686- | Dependencies | pytorch 0.4.0 | pytorch 1.0.0.dev |
685+ | Dependencies | pytorch 0.4.0 | pytorch 1.0.0 |
687686+-----------------------------+---------------+-------------------+
688687| boto3 | >=1.7.35 | >=1.9.11 |
689688+-----------------------------+---------------+-------------------+
690689| botocore | >=1.10.35 | >=1.12.11 |
691690+-----------------------------+---------------+-------------------+
692- | CUDA (GPU image only) | 9.0 | 9.2 |
691+ | CUDA (GPU image only) | 9.0 | 9.0 |
693692+-----------------------------+---------------+-------------------+
694693| numpy | >=1.14.3 | >=1.15.2 |
695694+-----------------------------+---------------+-------------------+
@@ -711,11 +710,11 @@ The PyTorch Docker images have the following dependencies installed:
711710+-----------------------------+---------------+-------------------+
712711| six | >=1.11.0 | >=1.11.0 |
713712+-----------------------------+---------------+-------------------+
714- | torch (torch-nightly) | 0.4.0 | 1.0.0.dev |
713+ | torch | 0.4.0 | 1.0.0 |
715714+-----------------------------+---------------+-------------------+
716715| torchvision | 0.2.1 | 0.2.1 |
717716+-----------------------------+---------------+-------------------+
718- | Python | 2.7 or 3.5 | 2.7 or 3.5 |
717+ | Python | 2.7 or 3.5 | 2.7 or 3.6 |
719718+-----------------------------+---------------+-------------------+
720719
721720The Docker images extend Ubuntu 16.04.
0 commit comments