@@ -206,7 +206,7 @@ def default_bucket(self):
206206 Bucket = default_bucket , CreateBucketConfiguration = {"LocationConstraint" : region }
207207 )
208208
209- LOGGER .info ("Created S3 bucket: {}" . format ( default_bucket ) )
209+ LOGGER .info ("Created S3 bucket: %s" , default_bucket )
210210 except ClientError as e :
211211 error_code = e .response ["Error" ]["Code" ]
212212 message = e .response ["Error" ]["Message" ]
@@ -343,8 +343,8 @@ def train( # noqa: C901
343343 if encrypt_inter_container_traffic :
344344 train_request ["EnableInterContainerTrafficEncryption" ] = encrypt_inter_container_traffic
345345
346- LOGGER .info ("Creating training-job with name: {}" . format ( job_name ) )
347- LOGGER .debug ("train request: {}" . format ( json .dumps (train_request , indent = 4 ) ))
346+ LOGGER .info ("Creating training-job with name: %s" , job_name )
347+ LOGGER .debug ("train request: %s" , json .dumps (train_request , indent = 4 ))
348348 self .sagemaker_client .create_training_job (** train_request )
349349
350350 def compile_model (
@@ -379,7 +379,7 @@ def compile_model(
379379 if tags is not None :
380380 compilation_job_request ["Tags" ] = tags
381381
382- LOGGER .info ("Creating compilation-job with name: {}" . format ( job_name ) )
382+ LOGGER .info ("Creating compilation-job with name: %s" , job_name )
383383 self .sagemaker_client .create_compilation_job (** compilation_job_request )
384384
385385 def tune (
@@ -521,8 +521,8 @@ def tune(
521521 if encrypt_inter_container_traffic :
522522 tune_request ["TrainingJobDefinition" ]["EnableInterContainerTrafficEncryption" ] = True
523523
524- LOGGER .info ("Creating hyperparameter tuning job with name: {}" . format ( job_name ) )
525- LOGGER .debug ("tune request: {}" . format ( json .dumps (tune_request , indent = 4 ) ))
524+ LOGGER .info ("Creating hyperparameter tuning job with name: %s" , job_name )
525+ LOGGER .debug ("tune request: %s" , json .dumps (tune_request , indent = 4 ))
526526 self .sagemaker_client .create_hyper_parameter_tuning_job (** tune_request )
527527
528528 def stop_tuning_job (self , name ):
@@ -535,18 +535,17 @@ def stop_tuning_job(self, name):
535535 ClientError: If an error occurs while trying to stop the hyperparameter tuning job.
536536 """
537537 try :
538- LOGGER .info ("Stopping tuning job: {}" . format ( name ) )
538+ LOGGER .info ("Stopping tuning job: %s" , name )
539539 self .sagemaker_client .stop_hyper_parameter_tuning_job (HyperParameterTuningJobName = name )
540540 except ClientError as e :
541541 error_code = e .response ["Error" ]["Code" ]
542542 # allow to pass if the job already stopped
543543 if error_code == "ValidationException" :
544- LOGGER .info ("Tuning job: {} is already stopped or not running." . format ( name ) )
544+ LOGGER .info ("Tuning job: %s is already stopped or not running." , name )
545545 else :
546546 LOGGER .error (
547- "Error occurred while attempting to stop tuning job: {}. Please try again." .format (
548- name
549- )
547+ "Error occurred while attempting to stop tuning job: %s. Please try again." ,
548+ name ,
550549 )
551550 raise
552551
@@ -608,8 +607,8 @@ def transform(
608607 if data_processing is not None :
609608 transform_request ["DataProcessing" ] = data_processing
610609
611- LOGGER .info ("Creating transform job with name: {}" . format ( job_name ) )
612- LOGGER .debug ("Transform request: {}" . format ( json .dumps (transform_request , indent = 4 ) ))
610+ LOGGER .info ("Creating transform job with name: %s" , job_name )
611+ LOGGER .debug ("Transform request: %s" , json .dumps (transform_request , indent = 4 ))
613612 self .sagemaker_client .create_transform_job (** transform_request )
614613
615614 def create_model (
@@ -681,8 +680,8 @@ def create_model(
681680 if enable_network_isolation :
682681 create_model_request ["EnableNetworkIsolation" ] = True
683682
684- LOGGER .info ("Creating model with name: {}" . format ( name ) )
685- LOGGER .debug ("CreateModel request: {}" . format ( json .dumps (create_model_request , indent = 4 ) ))
683+ LOGGER .info ("Creating model with name: %s" , name )
684+ LOGGER .debug ("CreateModel request: %s" , json .dumps (create_model_request , indent = 4 ))
686685
687686 try :
688687 self .sagemaker_client .create_model (** create_model_request )
@@ -694,7 +693,7 @@ def create_model(
694693 error_code == "ValidationException"
695694 and "Cannot create already existing model" in message
696695 ):
697- LOGGER .warning ("Using already existing model: {}" . format ( name ) )
696+ LOGGER .warning ("Using already existing model: %s" , name )
698697 else :
699698 raise
700699
@@ -765,14 +764,14 @@ def create_model_package_from_algorithm(self, name, description, algorithm_arn,
765764 },
766765 }
767766 try :
768- LOGGER .info ("Creating model package with name: {}" . format ( name ) )
767+ LOGGER .info ("Creating model package with name: %s" , name )
769768 self .sagemaker_client .create_model_package (** request )
770769 except ClientError as e :
771770 error_code = e .response ["Error" ]["Code" ]
772771 message = e .response ["Error" ]["Message" ]
773772
774773 if error_code == "ValidationException" and "ModelPackage already exists" in message :
775- LOGGER .warning ("Using already existing model package: {}" . format ( name ) )
774+ LOGGER .warning ("Using already existing model package: %s" , name )
776775 else :
777776 raise
778777
@@ -833,7 +832,7 @@ def create_endpoint_config(
833832 Returns:
834833 str: Name of the endpoint point configuration created.
835834 """
836- LOGGER .info ("Creating endpoint-config with name {}" . format ( name ) )
835+ LOGGER .info ("Creating endpoint-config with name %s" , name )
837836
838837 tags = tags or []
839838
@@ -872,7 +871,7 @@ def create_endpoint(self, endpoint_name, config_name, tags=None, wait=True):
872871 Returns:
873872 str: Name of the Amazon SageMaker ``Endpoint`` created.
874873 """
875- LOGGER .info ("Creating endpoint with name {}" . format ( endpoint_name ) )
874+ LOGGER .info ("Creating endpoint with name %s" , endpoint_name )
876875
877876 tags = tags or []
878877
@@ -915,7 +914,7 @@ def delete_endpoint(self, endpoint_name):
915914 Args:
916915 endpoint_name (str): Name of the Amazon SageMaker ``Endpoint`` to delete.
917916 """
918- LOGGER .info ("Deleting endpoint with name: {}" . format ( endpoint_name ) )
917+ LOGGER .info ("Deleting endpoint with name: %s" , endpoint_name )
919918 self .sagemaker_client .delete_endpoint (EndpointName = endpoint_name )
920919
921920 def delete_endpoint_config (self , endpoint_config_name ):
@@ -924,7 +923,7 @@ def delete_endpoint_config(self, endpoint_config_name):
924923 Args:
925924 endpoint_config_name (str): Name of the Amazon SageMaker endpoint configuration to delete.
926925 """
927- LOGGER .info ("Deleting endpoint configuration with name: {}" . format ( endpoint_config_name ) )
926+ LOGGER .info ("Deleting endpoint configuration with name: %s" , endpoint_config_name )
928927 self .sagemaker_client .delete_endpoint_config (EndpointConfigName = endpoint_config_name )
929928
930929 def delete_model (self , model_name ):
@@ -934,7 +933,7 @@ def delete_model(self, model_name):
934933 model_name (str): Name of the Amazon SageMaker model to delete.
935934
936935 """
937- LOGGER .info ("Deleting model with name: {}" . format ( model_name ) )
936+ LOGGER .info ("Deleting model with name: %s" , model_name )
938937 self .sagemaker_client .delete_model (ModelName = model_name )
939938
940939 def wait_for_job (self , job , poll = 5 ):
@@ -1258,9 +1257,8 @@ def get_caller_identity_arn(self):
12581257 role = self .boto_session .client ("iam" ).get_role (RoleName = role_name )["Role" ]["Arn" ]
12591258 except ClientError :
12601259 LOGGER .warning (
1261- "Couldn't call 'get_role' to get Role ARN from role name {} to get Role path." .format (
1262- role_name
1263- )
1260+ "Couldn't call 'get_role' to get Role ARN from role name %s to get Role path." ,
1261+ role_name ,
12641262 )
12651263
12661264 return role
0 commit comments