1515
1616import logging
1717
18- from sagemaker import fw_utils
19-
2018import sagemaker
2119from sagemaker .fw_utils import model_code_key_prefix , python_deprecation_warning
2220from sagemaker .fw_registry import default_framework_uri
@@ -118,16 +116,16 @@ def __init__(
118116 self .framework_version = framework_version
119117 self .model_server_workers = model_server_workers
120118
121- def prepare_container_def (self , instance_type , accelerator_type = None ):
119+ def prepare_container_def (self , instance_type = None , accelerator_type = None ):
122120 """Return a container definition with framework configuration set in
123121 model environment variables.
124122
125123 Args:
126124 instance_type (str): The EC2 instance type to deploy this Model to.
127- For example, 'ml.p2.xlarge' .
125+ This parameter is unused because Scikit-learn supports only CPU .
128126 accelerator_type (str): The Elastic Inference accelerator type to
129127 deploy to the instance for loading and making inferences to the
130- model. For example, 'ml.eia1.medium'. Note: accelerator types
128+ model. This parameter is unused because accelerator types
131129 are not supported by SKLearnModel.
132130
133131 Returns:
@@ -139,9 +137,8 @@ def prepare_container_def(self, instance_type, accelerator_type=None):
139137
140138 deploy_image = self .image
141139 if not deploy_image :
142- image_tag = "{}-{}-{}" .format (self .framework_version , "cpu" , self .py_version )
143- deploy_image = default_framework_uri (
144- self .__framework_name__ , self .sagemaker_session .boto_region_name , image_tag
140+ deploy_image = self .serving_image_uri (
141+ self .sagemaker_session .boto_region_name , instance_type
145142 )
146143
147144 deploy_key_prefix = model_code_key_prefix (self .key_prefix , self .name , deploy_image )
@@ -156,22 +153,17 @@ def prepare_container_def(self, instance_type, accelerator_type=None):
156153 )
157154 return sagemaker .container_def (deploy_image , model_data_uri , deploy_env )
158155
159- def serving_image_uri (self , region_name , instance_type ):
156+ def serving_image_uri (self , region_name , instance_type ): # pylint: disable=unused-argument
160157 """Create a URI for the serving image.
161158
162159 Args:
163160 region_name (str): AWS region where the image is uploaded.
164- instance_type (str): SageMaker instance type. Used to determine device type
165- (cpu/gpu/family-specific optimized) .
161+ instance_type (str): SageMaker instance type. This parameter is unused because
162+ Scikit-learn supports only CPU .
166163
167164 Returns:
168165 str: The appropriate image URI based on the given parameters.
169166
170167 """
171- return fw_utils .create_image_uri (
172- region_name ,
173- self .__framework_name__ ,
174- instance_type ,
175- self .framework_version ,
176- self .py_version ,
177- )
168+ image_tag = "{}-{}-{}" .format (self .framework_version , "cpu" , self .py_version )
169+ return default_framework_uri (self .__framework_name__ , region_name , image_tag )
0 commit comments