@@ -45,6 +45,12 @@ def __init__(
4545 dataset_type = "text/csv" ,
4646 s3_compression_type = "None" ,
4747 joinsource = None ,
48+ facet_dataset_uri = None ,
49+ facet_headers = None ,
50+ predicted_label_dataset_uri = None ,
51+ predicted_label_headers = None ,
52+ predicted_label = None ,
53+ excluded_columns = None ,
4854 ):
4955 """Initializes a configuration of both input and output datasets.
5056
@@ -54,22 +60,57 @@ def __init__(
5460 s3_analysis_config_output_path (str): S3 prefix to store the analysis config output.
5561 If this field is None, then the ``s3_output_path`` will be used
5662 to store the ``analysis_config`` output.
57- label (str): Target attribute of the model ** required** for bias metrics (both pre-
58- and post-training). Optional when running SHAP explainability .
59- Specified as column name or index for CSV dataset, or as JSONPath for JSONLines .
60- headers (list[str]): A list of column names in the input dataset .
63+ label (str): Target attribute of the model required by bias metrics.
64+ Specified as column name or index for CSV dataset or as JSONPath for JSONLines .
65+ *Required parameter* except for when the input dataset does not contain the label .
66+ Cannot be used at the same time as ``predicted_label`` .
6167 features (str): JSONPath for locating the feature columns for bias metrics if the
6268 dataset format is JSONLines.
6369 dataset_type (str): Format of the dataset. Valid values are ``"text/csv"`` for CSV,
6470 ``"application/jsonlines"`` for JSONLines, and
6571 ``"application/x-parquet"`` for Parquet.
6672 s3_compression_type (str): Valid options are "None" or ``"Gzip"``.
67- joinsource (str): The name or index of the column in the dataset that acts as an
68- identifier column (for instance, while performing a join). This column is only
69- used as an identifier, and not used for any other computations. This is an
70- optional field in all cases except when the dataset contains more than one file,
71- and ``save_local_shap_values`` is set to True
72- in :class:`~sagemaker.clarify.SHAPConfig`.
73+ joinsource (str or int): The name or index of the column in the dataset that
74+ acts as an identifier column (for instance, while performing a join).
75+ This column is only used as an identifier, and not used for any other computations.
76+ This is an optional field in all cases except:
77+
78+ * The dataset contains more than one file and `save_local_shap_values`
79+ is set to true in :class:`~sagemaker.clarify.ShapConfig`, and/or
80+ * When the dataset and/or facet dataset and/or predicted label dataset
81+ are in separate files.
82+
83+ facet_dataset_uri (str): Dataset S3 prefix/object URI that contains facet attribute(s),
84+ used for bias analysis on datasets without facets.
85+
86+ * If the dataset and the facet dataset are one single file each, then
87+ the original dataset and facet dataset must have the same number of rows.
88+ * If the dataset and facet dataset are in multiple files (either one), then
89+ an index column, ``joinsource``, is required to join the two datasets.
90+
91+ Clarify will not use the ``joinsource`` column and columns present in the facet
92+ dataset when calling model inference APIs.
93+ facet_headers (list[str]): List of column names in the facet dataset.
94+ predicted_label_dataset_uri (str): Dataset S3 prefix/object URI with predicted labels,
95+ which are used directly for analysis instead of making model inference API calls.
96+
97+ * If the dataset and the predicted label dataset are one single file each, then the
98+ original dataset and predicted label dataset must have the same number of rows.
99+ * If the dataset and predicted label dataset are in multiple files (either one),
100+ then an index column, ``joinsource``, is required to join the two datasets.
101+
102+ predicted_label_headers (list[str]): List of column names in the predicted label dataset
103+ predicted_label (str or int): Predicted label of the target attribute of the model
104+ required for running bias analysis. Specified as column name or index for CSV data.
105+ Clarify uses the predicted labels directly instead of making model inference API
106+ calls. Cannot be used at the same time as ``label``.
107+ excluded_columns (list[int] or list[str]): A list of names or indices of the columns
108+ which are to be excluded from making model inference API calls.
109+
110+ Raises:
111+ ValueError: when the ``dataset_type`` is invalid, predicted label dataset parameters
112+ are used with un-supported ``dataset_type``, or facet dataset parameters
113+ are used with un-supported ``dataset_type``
73114 """
74115 if dataset_type not in [
75116 "text/csv" ,
@@ -81,6 +122,32 @@ def __init__(
81122 f"Invalid dataset_type '{ dataset_type } '."
82123 f" Please check the API documentation for the supported dataset types."
83124 )
125+ # parameters for analysis on datasets without facets are only supported for CSV datasets
126+ if dataset_type != "text/csv" :
127+ if predicted_label :
128+ raise ValueError (
129+ f"The parameter 'predicted_label' is not supported"
130+ f" for dataset_type '{ dataset_type } '."
131+ f" Please check the API documentation for the supported dataset types."
132+ )
133+ if excluded_columns :
134+ raise ValueError (
135+ f"The parameter 'excluded_columns' is not supported"
136+ f" for dataset_type '{ dataset_type } '."
137+ f" Please check the API documentation for the supported dataset types."
138+ )
139+ if facet_dataset_uri or facet_headers :
140+ raise ValueError (
141+ f"The parameters 'facet_dataset_uri' and 'facet_headers'"
142+ f" are not supported for dataset_type '{ dataset_type } '."
143+ f" Please check the API documentation for the supported dataset types."
144+ )
145+ if predicted_label_dataset_uri or predicted_label_headers :
146+ raise ValueError (
147+ f"The parameters 'predicted_label_dataset_uri' and 'predicted_label_headers'"
148+ f" are not supported for dataset_type '{ dataset_type } '."
149+ f" Please check the API documentation for the supported dataset types."
150+ )
84151 self .s3_data_input_path = s3_data_input_path
85152 self .s3_output_path = s3_output_path
86153 self .s3_analysis_config_output_path = s3_analysis_config_output_path
@@ -89,13 +156,25 @@ def __init__(
89156 self .label = label
90157 self .headers = headers
91158 self .features = features
159+ self .facet_dataset_uri = facet_dataset_uri
160+ self .facet_headers = facet_headers
161+ self .predicted_label_dataset_uri = predicted_label_dataset_uri
162+ self .predicted_label_headers = predicted_label_headers
163+ self .predicted_label = predicted_label
164+ self .excluded_columns = excluded_columns
92165 self .analysis_config = {
93166 "dataset_type" : dataset_type ,
94167 }
95168 _set (features , "features" , self .analysis_config )
96169 _set (headers , "headers" , self .analysis_config )
97170 _set (label , "label" , self .analysis_config )
98171 _set (joinsource , "joinsource_name_or_index" , self .analysis_config )
172+ _set (facet_dataset_uri , "facet_dataset_uri" , self .analysis_config )
173+ _set (facet_headers , "facet_headers" , self .analysis_config )
174+ _set (predicted_label_dataset_uri , "predicted_label_dataset_uri" , self .analysis_config )
175+ _set (predicted_label_headers , "predicted_label_headers" , self .analysis_config )
176+ _set (predicted_label , "predicted_label" , self .analysis_config )
177+ _set (excluded_columns , "excluded_columns" , self .analysis_config )
99178
100179 def get_config (self ):
101180 """Returns part of an analysis config dictionary."""
@@ -205,21 +284,23 @@ def __init__(
205284 r"""Initializes a configuration of a model and the endpoint to be created for it.
206285
207286 Args:
208- model_name (str): Model name (as created by 'CreateModel').
287+ model_name (str): Model name (as created by
288+ `CreateModel <https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html>`_.
209289 instance_count (int): The number of instances of a new endpoint for model inference.
210- instance_type (str): The type of EC2 instance to use for model inference,
211- for example, ``"ml.c5.xlarge"``.
290+ instance_type (str): The type of
291+ `EC2 instance <https://aws.amazon.com/ec2/instance-types/>`_
292+ to use for model inference; for example, ``"ml.c5.xlarge"``.
212293 accept_type (str): The model output format to be used for getting inferences with the
213- shadow endpoint. Valid values are "text/csv" for CSV and "application/jsonlines".
214- Default is the same as content_type.
294+ shadow endpoint. Valid values are `` "text/csv"`` for CSV and
295+ ``"application/jsonlines"``. Default is the same as `` content_type`` .
215296 content_type (str): The model input format to be used for getting inferences with the
216- shadow endpoint. Valid values are "text/csv" for CSV and "application/jsonlines".
217- Default is the same as dataset format .
297+ shadow endpoint. Valid values are `` "text/csv"`` for CSV and
298+ ``"application/jsonlines"``. Default is the same as ``dataset_format`` .
218299 content_template (str): A template string to be used to construct the model input from
219300 dataset instances. It is only used when ``model_content_type`` is
220301 ``"application/jsonlines"``. The template should have one and only one placeholder,
221- "features", which will be replaced by a features list to form the model inference
222- input.
302+ `` "features"`` , which will be replaced by a features list to form the model
303+ inference input.
223304 custom_attributes (str): Provides additional information about a request for an
224305 inference submitted to a model hosted at an Amazon SageMaker endpoint. The
225306 information is an opaque value that is forwarded verbatim. You could use this
@@ -509,16 +590,20 @@ def __init__(
509590 for these units.
510591 language (str): Specifies the language of the text features. Accepted values are
511592 one of the following:
512- "chinese", "danish", "dutch", "english", "french", "german", "greek", "italian",
513- "japanese", "lithuanian", "multi-language", "norwegian bokmål", "polish",
514- "portuguese", "romanian", "russian", "spanish", "afrikaans", "albanian", "arabic",
515- "armenian", "basque", "bengali", "bulgarian", "catalan", "croatian", "czech",
516- "estonian", "finnish", "gujarati", "hebrew", "hindi", "hungarian", "icelandic",
517- "indonesian", "irish", "kannada", "kyrgyz", "latvian", "ligurian", "luxembourgish",
518- "macedonian", "malayalam", "marathi", "nepali", "persian", "sanskrit", "serbian",
519- "setswana", "sinhala", "slovak", "slovenian", "swedish", "tagalog", "tamil",
520- "tatar", "telugu", "thai", "turkish", "ukrainian", "urdu", "vietnamese", "yoruba".
521- Use "multi-language" for a mix of multiple languages.
593+ ``"chinese"``, ``"danish"``, ``"dutch"``, ``"english"``, ``"french"``, ``"german"``,
594+ ``"greek"``, ``"italian"``, ``"japanese"``, ``"lithuanian"``, ``"multi-language"``,
595+ ``"norwegian bokmål"``, ``"polish"``, ``"portuguese"``, ``"romanian"``,
596+ ``"russian"``, ``"spanish"``, ``"afrikaans"``, ``"albanian"``, ``"arabic"``,
597+ ``"armenian"``, ``"basque"``, ``"bengali"``, ``"bulgarian"``, ``"catalan"``,
598+ ``"croatian"``, ``"czech"``, ``"estonian"``, ``"finnish"``, ``"gujarati"``,
599+ ``"hebrew"``, ``"hindi"``, ``"hungarian"``, ``"icelandic"``, ``"indonesian"``,
600+ ``"irish"``, ``"kannada"``, ``"kyrgyz"``, ``"latvian"``, ``"ligurian"``,
601+ ``"luxembourgish"``, ``"macedonian"``, ``"malayalam"``, ``"marathi"``, ``"nepali"``,
602+ ``"persian"``, ``"sanskrit"``, ``"serbian"``, ``"setswana"``, ``"sinhala"``,
603+ ``"slovak"``, ``"slovenian"``, ``"swedish"``, ``"tagalog"``, ``"tamil"``,
604+ ``"tatar"``, ``"telugu"``, ``"thai"``, ``"turkish"``, ``"ukrainian"``, ``"urdu"``,
605+ ``"vietnamese"``, ``"yoruba"``.
606+ Use ``"multi-language"`` for a mix of multiple languages.
522607
523608 Raises:
524609 ValueError: when ``granularity`` is not in list of supported values
@@ -742,12 +827,15 @@ def __init__(
742827 data stored in Amazon S3.
743828 instance_count (int): The number of instances to run
744829 a processing job with.
745- instance_type (str): The type of EC2 instance to use for
746- processing, for example, ``'ml.c4.xlarge'``.
747- volume_size_in_gb (int): Size in GB of the EBS volume
748- to use for storing data during processing (default: 30).
749- volume_kms_key (str): A KMS key for the processing
750- volume (default: None).
830+ instance_type (str): The type of
831+ `EC2 instance <https://aws.amazon.com/ec2/instance-types/>`_
832+ to use for model inference; for example, ``"ml.c5.xlarge"``.
833+ volume_size_in_gb (int): Size in GB of the
834+ `EBS volume <https://docs.aws.amazon.com/sagemaker/latest/dg/host-instance-storage.html>`_.
835+ to use for storing data during processing (default: 30 GB).
836+ volume_kms_key (str): A
837+ `KMS key <https://docs.aws.amazon.com/sagemaker/latest/dg/key-management.html>`_
838+ for the processing volume (default: None).
751839 output_kms_key (str): The KMS key ID for processing job outputs (default: None).
752840 max_runtime_in_seconds (int): Timeout in seconds (default: None).
753841 After this amount of time, Amazon SageMaker terminates the job,
@@ -769,7 +857,7 @@ def __init__(
769857 inter-container traffic, security group IDs, and subnets.
770858 job_name_prefix (str): Processing job name prefix.
771859 version (str): Clarify version to use.
772- """
860+ """ # noqa E501 # pylint: disable=c0301
773861 container_uri = image_uris .retrieve ("clarify" , sagemaker_session .boto_region_name , version )
774862 self .job_name_prefix = job_name_prefix
775863 super (SageMakerClarifyProcessor , self ).__init__ (
@@ -1163,6 +1251,7 @@ def run_explainability(
11631251
11641252 Currently, only SHAP and Partial Dependence Plots (PDP) are supported
11651253 as explainability methods.
1254+ You can request both methods or one at a time with the ``explainability_config`` parameter.
11661255
11671256 When SHAP is requested in the ``explainability_config``,
11681257 the SHAP algorithm calculates the feature importance for each input example
@@ -1188,6 +1277,8 @@ def run_explainability(
11881277 Config of the specific explainability method or a list of
11891278 :class:`~sagemaker.clarify.ExplainabilityConfig` objects.
11901279 Currently, SHAP and PDP are the two methods supported.
1280+ You can request multiple methods at once by passing in a list of
1281+ `~sagemaker.clarify.ExplainabilityConfig`.
11911282 model_scores (int or str or :class:`~sagemaker.clarify.ModelPredictedLabelConfig`):
11921283 Index or JSONPath to locate the predicted scores in the model output. This is not
11931284 required if the model output is a single score. Alternatively, it can be an instance
0 commit comments