1111# ANY KIND, either express or implied. See the License for the specific
1212# language governing permissions and limitations under the License.
1313"""Placeholder docstring"""
14+
1415from __future__ import absolute_import
1516
1617import importlib
@@ -641,8 +642,11 @@ def __init__(
641642 extract the metric from the logs. This should be defined only
642643 for hyperparameter tuning jobs that don't use an Amazon
643644 algorithm.
644- strategy (str or PipelineVariable): Strategy to be used for hyperparameter estimations
645- (default: 'Bayesian').
645+ strategy (str or PipelineVariable): Strategy to be used for hyperparameter estimations.
646+ More information about different strategies:
647+ https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html.
648+ Available options are: 'Bayesian', 'Random', 'Hyperband',
649+ 'Grid' (default: 'Bayesian')
646650 objective_type (str or PipelineVariable): The type of the objective metric for
647651 evaluating training jobs. This value can be either 'Minimize' or
648652 'Maximize' (default: 'Maximize').
@@ -759,7 +763,8 @@ def __init__(
759763 self .autotune = autotune
760764
761765 def override_resource_config (
762- self , instance_configs : Union [List [InstanceConfig ], Dict [str , List [InstanceConfig ]]]
766+ self ,
767+ instance_configs : Union [List [InstanceConfig ], Dict [str , List [InstanceConfig ]]],
763768 ):
764769 """Override the instance configuration of the estimators used by the tuner.
765770
@@ -966,7 +971,7 @@ def fit(
966971 include_cls_metadata : Union [bool , Dict [str , bool ]] = False ,
967972 estimator_kwargs : Optional [Dict [str , dict ]] = None ,
968973 wait : bool = True ,
969- ** kwargs
974+ ** kwargs ,
970975 ):
971976 """Start a hyperparameter tuning job.
972977
@@ -1055,7 +1060,7 @@ def _fit_with_estimator_dict(self, inputs, job_name, include_cls_metadata, estim
10551060 allowed_keys = estimator_names ,
10561061 )
10571062
1058- for ( estimator_name , estimator ) in self .estimator_dict .items ():
1063+ for estimator_name , estimator in self .estimator_dict .items ():
10591064 ins = inputs .get (estimator_name , None ) if inputs is not None else None
10601065 args = estimator_kwargs .get (estimator_name , {}) if estimator_kwargs is not None else {}
10611066 self ._prepare_estimator_for_tuning (estimator , ins , job_name , ** args )
@@ -1282,7 +1287,7 @@ def _attach_with_training_details_list(cls, sagemaker_session, estimator_cls, jo
12821287 objective_metric_name_dict = objective_metric_name_dict ,
12831288 hyperparameter_ranges_dict = hyperparameter_ranges_dict ,
12841289 metric_definitions_dict = metric_definitions_dict ,
1285- ** init_params
1290+ ** init_params ,
12861291 )
12871292
12881293 def deploy (
@@ -1297,7 +1302,7 @@ def deploy(
12971302 model_name = None ,
12981303 kms_key = None ,
12991304 data_capture_config = None ,
1300- ** kwargs
1305+ ** kwargs ,
13011306 ):
13021307 """Deploy the best trained or user specified model to an Amazon SageMaker endpoint.
13031308
@@ -1363,7 +1368,7 @@ def deploy(
13631368 model_name = model_name ,
13641369 kms_key = kms_key ,
13651370 data_capture_config = data_capture_config ,
1366- ** kwargs
1371+ ** kwargs ,
13671372 )
13681373
13691374 def stop_tuning_job (self ):
0 commit comments