|
| 1 | +# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"). You |
| 4 | +# may not use this file except in compliance with the License. A copy of |
| 5 | +# the License is located at |
| 6 | +# |
| 7 | +# http://aws.amazon.com/apache2.0/ |
| 8 | +# |
| 9 | +# or in the "license" file accompanying this file. This file is |
| 10 | +# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF |
| 11 | +# ANY KIND, either express or implied. See the License for the specific |
| 12 | +# language governing permissions and limitations under the License. |
| 13 | +from __future__ import absolute_import |
| 14 | +import time |
| 15 | +from typing import Union |
| 16 | + |
| 17 | + |
| 18 | +import os |
| 19 | +import re |
| 20 | +import pytest |
| 21 | +import subprocess |
| 22 | +import logging |
| 23 | +import sagemaker |
| 24 | +import boto3 |
| 25 | +import urllib3 |
| 26 | +from pathlib import Path |
| 27 | +from sagemaker.huggingface import ( |
| 28 | + HuggingFaceModel, |
| 29 | + get_huggingface_llm_image_uri |
| 30 | +) |
| 31 | +from sagemaker.deserializers import JSONDeserializer |
| 32 | +from sagemaker.local import LocalSession |
| 33 | +from sagemaker.serializers import JSONSerializer |
| 34 | + |
| 35 | + |
| 36 | +# Replace this role ARN with an appropriate role for your environment |
| 37 | +ROLE = "arn:aws:iam::111111111111:role/service-role/AmazonSageMaker-ExecutionRole-20200101T000001" |
| 38 | + |
| 39 | + |
| 40 | +def ensure_docker_compose_installed(): |
| 41 | + """ |
| 42 | + Downloads the Docker Compose plugin if not present, and verifies installation |
| 43 | + by checking the output of 'docker compose version' matches the pattern: |
| 44 | + 'Docker Compose version vX.Y.Z' |
| 45 | + """ |
| 46 | + |
| 47 | + cli_plugins_path = Path.home() / ".docker" / "cli-plugins" |
| 48 | + cli_plugins_path.mkdir(parents=True, exist_ok=True) |
| 49 | + |
| 50 | + compose_binary_path = cli_plugins_path / "docker-compose" |
| 51 | + if not compose_binary_path.exists(): |
| 52 | + subprocess.run( |
| 53 | + [ |
| 54 | + "curl", |
| 55 | + "-SL", |
| 56 | + "https://github.com/docker/compose/releases/download/v2.3.3/docker-compose-linux-x86_64", |
| 57 | + "-o", |
| 58 | + str(compose_binary_path), |
| 59 | + ], |
| 60 | + check=True, |
| 61 | + ) |
| 62 | + subprocess.run(["chmod", "+x", str(compose_binary_path)], check=True) |
| 63 | + |
| 64 | + # Verify Docker Compose version |
| 65 | + try: |
| 66 | + output = subprocess.check_output(["docker", "compose", "version"], stderr=subprocess.STDOUT) |
| 67 | + output_decoded = output.decode("utf-8").strip() |
| 68 | + logging.info(f"'docker compose version' output: {output_decoded}") |
| 69 | + |
| 70 | + # Example expected format: "Docker Compose version vxxx" |
| 71 | + pattern = r"Docker Compose version+" |
| 72 | + match = re.search(pattern, output_decoded) |
| 73 | + assert ( |
| 74 | + match is not None |
| 75 | + ), f"Could not find a Docker Compose version string matching '{pattern}' in: {output_decoded}" |
| 76 | + |
| 77 | + except subprocess.CalledProcessError as e: |
| 78 | + raise AssertionError(f"Failed to verify Docker Compose: {e}") |
| 79 | + |
| 80 | + |
| 81 | +""" |
| 82 | +Local Model: HuggingFace LLM Inference |
| 83 | +""" |
| 84 | +@pytest.mark.local |
| 85 | +def test_huggingfacellm_local_model_inference(): |
| 86 | + """ |
| 87 | + Test local mode inference with DJL-LMI inference containers |
| 88 | + without a model_data path provided at runtime. This test should |
| 89 | + be run on a GPU only machine with instance set to local_gpu. |
| 90 | + """ |
| 91 | + ensure_docker_compose_installed() |
| 92 | + |
| 93 | + # 1. Create a local session for inference |
| 94 | + sagemaker_session = LocalSession() |
| 95 | + sagemaker_session.config = {"local": {"local_code": True}} |
| 96 | + |
| 97 | + djllmi_model = sagemaker.Model( |
| 98 | + image_uri="763104351884.dkr.ecr.us-east-1.amazonaws.com/djl-inference:0.31.0-lmi13.0.0-cu124", |
| 99 | + env={ |
| 100 | + "HF_MODEL_ID": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", |
| 101 | + "OPTION_MAX_MODEL_LEN": "10000", |
| 102 | + "OPTION_GPU_MEMORY_UTILIZATION": "0.95", |
| 103 | + "OPTION_ENABLE_STREAMING": "false", |
| 104 | + "OPTION_ROLLING_BATCH": "auto", |
| 105 | + "OPTION_MODEL_LOADING_TIMEOUT": "3600", |
| 106 | + "OPTION_PAGED_ATTENTION": "false", |
| 107 | + "OPTION_DTYPE": "fp16", |
| 108 | + }, |
| 109 | + role=ROLE, |
| 110 | + sagemaker_session=sagemaker_session |
| 111 | + ) |
| 112 | + |
| 113 | + logging.warning('Deploying endpoint in local mode') |
| 114 | + logging.warning( |
| 115 | + 'Note: if launching for the first time in local mode, container image download might take a few minutes to complete.' |
| 116 | + ) |
| 117 | + |
| 118 | + endpoint_name = "test-djl" |
| 119 | + djllmi_model.deploy( |
| 120 | + endpoint_name=endpoint_name, |
| 121 | + initial_instance_count=1, |
| 122 | + instance_type="local_gpu", |
| 123 | + container_startup_health_check_timeout=600, |
| 124 | + ) |
| 125 | + predictor = sagemaker.Predictor( |
| 126 | + endpoint_name=endpoint_name, |
| 127 | + sagemaker_session=sagemaker_session, |
| 128 | + serializer=JSONSerializer(), |
| 129 | + deserializer=JSONDeserializer(), |
| 130 | + ) |
| 131 | + test_response = predictor.predict( |
| 132 | + { |
| 133 | + "inputs": """<|begin_of_text|> |
| 134 | + <|start_header_id|>system<|end_header_id|> |
| 135 | + You are a helpful assistant that thinks and reasons before answering. |
| 136 | + <|eot_id|> |
| 137 | + <|start_header_id|>user<|end_header_id|> |
| 138 | + What's 2x2? |
| 139 | + <|eot_id|> |
| 140 | + |
| 141 | + <|start_header_id|>assistant<|end_header_id|> |
| 142 | + """ |
| 143 | + } |
| 144 | + ) |
| 145 | + logging.warning(test_response) |
| 146 | + gen_text = test_response['generated_text'] |
| 147 | + logging.warning(f"\n=======\nmodel response: {gen_text}\n=======\n") |
| 148 | + |
| 149 | + assert type(test_response) == dict, f"invalid model response format: {gen_text}" |
| 150 | + assert type(gen_text) == str, f"assistant response format: {gen_text}" |
| 151 | + |
| 152 | + logging.warning('About to delete the endpoint') |
| 153 | + predictor.delete_endpoint() |
| 154 | + |
| 155 | + |
| 156 | +""" |
| 157 | +Local Model: HuggingFace TGI Inference |
| 158 | +""" |
| 159 | +@pytest.mark.local |
| 160 | +def test_huggingfacetgi_local_model_inference(): |
| 161 | + """ |
| 162 | + Test local mode inference with HuggingFace TGI inference containers |
| 163 | + without a model_data path provided at runtime. This test should |
| 164 | + be run on a GPU only machine with instance set to local_gpu. |
| 165 | + """ |
| 166 | + ensure_docker_compose_installed() |
| 167 | + |
| 168 | + # 1. Create a local session for inference |
| 169 | + sagemaker_session = LocalSession() |
| 170 | + sagemaker_session.config = {"local": {"local_code": True}} |
| 171 | + |
| 172 | + huggingface_model = HuggingFaceModel( |
| 173 | + image_uri=get_huggingface_llm_image_uri( |
| 174 | + "huggingface", |
| 175 | + version="2.3.1" |
| 176 | + ), |
| 177 | + env={ |
| 178 | + "HF_MODEL_ID": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", |
| 179 | + "ENDPOINT_SERVER_TIMEOUT": "3600", |
| 180 | + "MESSAGES_API_ENABLED": "true", |
| 181 | + "OPTION_ENTRYPOINT": "inference.py", |
| 182 | + "SAGEMAKER_ENV": "1", |
| 183 | + "SAGEMAKER_MODEL_SERVER_WORKERS": "1", |
| 184 | + "SAGEMAKER_PROGRAM": "inference.py", |
| 185 | + "SM_NUM_GPUS": "1", |
| 186 | + "MAX_TOTAL_TOKENS": "1024", |
| 187 | + "MAX_INPUT_TOKENS": "800", |
| 188 | + "MAX_BATCH_PREFILL_TOKENS": "900", |
| 189 | + "DTYPE": "bfloat16", |
| 190 | + "PORT": "8080" |
| 191 | + }, |
| 192 | + role=ROLE, |
| 193 | + sagemaker_session=sagemaker_session |
| 194 | + ) |
| 195 | + |
| 196 | + logging.warning('Deploying endpoint in local mode') |
| 197 | + logging.warning( |
| 198 | + 'Note: if launching for the first time in local mode, container image download might take a few minutes to complete.' |
| 199 | + ) |
| 200 | + |
| 201 | + endpoint_name = "test-hf" |
| 202 | + huggingface_model.deploy( |
| 203 | + endpoint_name=endpoint_name, |
| 204 | + initial_instance_count=1, |
| 205 | + instance_type="local_gpu", |
| 206 | + container_startup_health_check_timeout=600, |
| 207 | + ) |
| 208 | + predictor = sagemaker.Predictor( |
| 209 | + endpoint_name=endpoint_name, |
| 210 | + sagemaker_session=sagemaker_session, |
| 211 | + serializer=JSONSerializer(), |
| 212 | + deserializer=JSONDeserializer(), |
| 213 | + ) |
| 214 | + test_response = predictor.predict( |
| 215 | + { |
| 216 | + "messages": [ |
| 217 | + {"role": "system", "content": "You are a helpful assistant." }, |
| 218 | + {"role": "user", "content": "What is 2x2?"} |
| 219 | + ] |
| 220 | + } |
| 221 | + ) |
| 222 | + logging.warning(test_response) |
| 223 | + gen_text = test_response['choices'][0]['message'] |
| 224 | + logging.warning(f"\n=======\nmodel response: {gen_text}\n=======\n") |
| 225 | + |
| 226 | + assert type(gen_text) == dict, f"invalid model response: {gen_text}" |
| 227 | + assert gen_text['role'] == 'assistant', f"assistant response missing: {gen_text}" |
| 228 | + |
| 229 | + logging.warning('About to delete the endpoint') |
| 230 | + predictor.delete_endpoint() |
| 231 | + |
| 232 | + |
| 233 | + |
0 commit comments