|
22 | 22 | import pytest |
23 | 23 |
|
24 | 24 | from sagemaker.amazon.linear_learner import LinearLearner, LinearLearnerModel |
25 | | -from sagemaker.utils import name_from_base, sagemaker_timestamp |
| 25 | +from sagemaker.utils import unique_name_from_base, sagemaker_timestamp |
26 | 26 | from tests.integ import DATA_DIR, TRAINING_DEFAULT_TIMEOUT_MINUTES |
27 | 27 | from tests.integ.timeout import timeout, timeout_and_delete_endpoint_by_name |
28 | 28 |
|
@@ -80,7 +80,7 @@ def test_linear_learner(sagemaker_session): |
80 | 80 | ll.early_stopping_patience = 3 |
81 | 81 | ll.fit(ll.record_set(train_set[0][:200], train_set[1][:200])) |
82 | 82 |
|
83 | | - endpoint_name = name_from_base('linear-learner') |
| 83 | + endpoint_name = unique_name_from_base('linear-learner') |
84 | 84 | with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session): |
85 | 85 |
|
86 | 86 | predictor = ll.deploy(1, 'ml.c4.xlarge', endpoint_name=endpoint_name) |
@@ -109,7 +109,7 @@ def test_linear_learner_multiclass(sagemaker_session): |
109 | 109 | ll.epochs = 1 |
110 | 110 | ll.fit(ll.record_set(train_set[0][:200], train_set[1][:200])) |
111 | 111 |
|
112 | | - endpoint_name = name_from_base('linear-learner') |
| 112 | + endpoint_name = unique_name_from_base('linear-learner') |
113 | 113 | with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session): |
114 | 114 |
|
115 | 115 | predictor = ll.deploy(1, 'ml.c4.xlarge', endpoint_name=endpoint_name) |
|
0 commit comments