Skip to content

Commit dd2529a

Browse files
Ragav VenkatesanJonathan Esterhazy
authored andcommitted
add Semantic Segmentation to registry
1 parent 96ccb0f commit dd2529a

File tree

6 files changed

+12
-8
lines changed

6 files changed

+12
-8
lines changed

CHANGELOG.rst

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@ CHANGELOG
88
* bug-fix: Fix FileNotFoundError for entry_point without source_dir
99
* doc-fix: Add missing feature 1.5.0 in change log
1010
* doc-fix: Add README for airflow
11+
* feature: Add Amazon SageMaker Semantic Segmentation algorithm to the registry.
1112

1213
1.15.1
1314
======
@@ -363,4 +364,4 @@ CHANGELOG
363364
1.0.0
364365
=====
365366

366-
* Initial commit
367+
* Initial commit

README.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -344,7 +344,7 @@ Currently, the following algorithms support incremental training:
344344
345345
- Image Classification
346346
- Object Detection
347-
- Semantics Segmentation
347+
- Semantic Segmentation
348348
349349
350350
MXNet SageMaker Estimators

src/sagemaker/amazon/amazon_estimator.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -336,7 +336,7 @@ def registry(region_name, algorithm=None):
336336
"us-west-1": "632365934929",
337337
}[region_name]
338338
elif algorithm in ["xgboost", "seq2seq", "image-classification", "blazingtext",
339-
"object-detection"]:
339+
"object-detection", "semantic-segmentation"]:
340340
account_id = {
341341
"us-east-1": "811284229777",
342342
"us-east-2": "825641698319",

tests/integ/test_inference_pipeline.py

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -75,10 +75,12 @@ def test_inference_pipeline_model_deploy(sagemaker_session):
7575
}
7676
})
7777
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
78-
sparkml_model = SparkMLModel(model_data=sparkml_model_data, env={'SAGEMAKER_SPARKML_SCHEMA': schema})
78+
sparkml_model = SparkMLModel(model_data=sparkml_model_data, env={'SAGEMAKER_SPARKML_SCHEMA': schema},
79+
sagemaker_session=sagemaker_session)
7980
xgb_image = get_image_uri(Session().boto_region_name, 'xgboost')
80-
xgb_model = Model(model_data=xgb_model_data, image=xgb_image)
81-
model = PipelineModel(models=[sparkml_model, xgb_model], role='SageMakerRole', name=endpoint_name)
81+
xgb_model = Model(model_data=xgb_model_data, image=xgb_image, sagemaker_session=sagemaker_session)
82+
model = PipelineModel(models=[sparkml_model, xgb_model], role='SageMakerRole',
83+
sagemaker_session=sagemaker_session, name=endpoint_name)
8284
model.deploy(1, 'ml.m4.xlarge', endpoint_name=endpoint_name)
8385
predictor = RealTimePredictor(endpoint=endpoint_name, sagemaker_session=sagemaker_session,
8486
serializer=json_serializer, content_type=CONTENT_TYPE_CSV,

tests/integ/test_sparkml_serving.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,8 @@ def test_sparkml_model_deploy(sagemaker_session):
6565
}
6666
})
6767
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
68-
model = SparkMLModel(model_data=model_data, role='SageMakerRole', env={'SAGEMAKER_SPARKML_SCHEMA': schema})
68+
model = SparkMLModel(model_data=model_data, role='SageMakerRole', sagemaker_session=sagemaker_session,
69+
env={'SAGEMAKER_SPARKML_SCHEMA': schema})
6970
predictor = model.deploy(1, 'ml.m4.xlarge', endpoint_name=endpoint_name)
7071

7172
valid_data = "1.0,C,38.0,71.5,1.0,female"

tests/integ/test_tf.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -162,4 +162,4 @@ def test_failed_tf_training(sagemaker_session, tf_full_version):
162162

163163
with pytest.raises(ValueError) as e:
164164
estimator.fit()
165-
assert 'ExecuteUserScriptError' in str(e.value)
165+
assert 'This failure is expected' in str(e.value)

0 commit comments

Comments
 (0)