|
21 | 21 | from sagemaker.mxnet.model import MXNetModel |
22 | 22 |
|
23 | 23 | from tests.integ import DATA_DIR, REGION |
24 | | -from tests.integ.timeout import timeout |
| 24 | +from tests.integ.timeout import timeout, timeout_and_delete_endpoint_by_name |
25 | 25 |
|
26 | 26 |
|
27 | 27 | @pytest.fixture(scope='module') |
@@ -49,26 +49,24 @@ def mxnet_training_job(sagemaker_session): |
49 | 49 |
|
50 | 50 |
|
51 | 51 | def test_attach_deploy(mxnet_training_job, sagemaker_session): |
52 | | - with timeout(minutes=15): |
| 52 | + endpoint_name = 'test-mxnet-attach-deploy-{}'.format(int(time.time())) |
| 53 | + |
| 54 | + with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=15): |
53 | 55 | estimator = MXNet.attach(mxnet_training_job, sagemaker_session=sagemaker_session) |
54 | | - predictor = estimator.deploy(1, 'ml.m4.xlarge', |
55 | | - endpoint_name='test-mxnet-attach-deploy-{}'.format(int(time.time()))) |
56 | | - try: |
57 | | - data = numpy.zeros(shape=(1, 1, 28, 28)) |
58 | | - predictor.predict(data) |
59 | | - finally: |
60 | | - sagemaker_session.delete_endpoint(predictor.endpoint) |
| 56 | + predictor = estimator.deploy(1, 'ml.m4.xlarge', endpoint_name=endpoint_name) |
| 57 | + data = numpy.zeros(shape=(1, 1, 28, 28)) |
| 58 | + predictor.predict(data) |
61 | 59 |
|
62 | 60 |
|
63 | 61 | def test_deploy_model(mxnet_training_job, sagemaker_session): |
64 | | - with timeout(minutes=15): |
| 62 | + endpoint_name = 'test-mxnet-deploy-model-{}'.format(int(time.time())) |
| 63 | + |
| 64 | + with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=15): |
65 | 65 | desc = sagemaker_session.sagemaker_client.describe_training_job(TrainingJobName=mxnet_training_job) |
66 | 66 | model_data = desc['ModelArtifacts']['S3ModelArtifacts'] |
67 | 67 | script_path = os.path.join(DATA_DIR, 'mxnet_mnist', 'mnist.py') |
68 | 68 | model = MXNetModel(model_data, 'SageMakerRole', entry_point=script_path, sagemaker_session=sagemaker_session) |
69 | | - predictor = model.deploy(1, 'ml.m4.xlarge', endpoint_name='test-mxnet-deploy-model-{}'.format(int(time.time()))) |
70 | | - try: |
71 | | - data = numpy.zeros(shape=(1, 1, 28, 28)) |
72 | | - predictor.predict(data) |
73 | | - finally: |
74 | | - sagemaker_session.delete_endpoint(predictor.endpoint) |
| 69 | + predictor = model.deploy(1, 'ml.m4.xlarge', endpoint_name=endpoint_name) |
| 70 | + |
| 71 | + data = numpy.zeros(shape=(1, 1, 28, 28)) |
| 72 | + predictor.predict(data) |
0 commit comments