Releases: aws/sagemaker-python-sdk
Releases · aws/sagemaker-python-sdk
v2.23.4.post0
Documentation Changes
- update predict_fn implementation for PyTorch EIA 1.5.1
v2.23.4
Bug Fixes and Other Changes
- remove captureWarninig setting
v2.23.3
Bug Fixes and Other Changes
- improve optional dependency error message
- add debugger rule container account in PDT
- assert step execution first in pipeline test
- add service inserted fields to generated Hive DDL
Documentation Changes
- fix description for max_wait
- use correct classpath in V2 alias documentation.
- Bad arg name in feat-store ingestion manager
v2.23.2
Bug Fixes and Other Changes
- remove shell=True in subprocess.check_output
- use SecurityConfig dict key
Documentation Changes
- remove D212 from ignore to comply with PEP257 standards
v2.23.1
Bug Fixes and Other Changes
- update git utils temp file
- Allow online store only FeatureGroups
Documentation Changes
- inform contributors when not to mark integration tests as canaries
- adding change log for smd model parallel
v2.23.0
Features
- Add support for actions in debugger rules.
Bug Fixes and Other Changes
- include sparkml 2.4 in image uri config properly
- Mount metadata dir only if it exists
- allow urllib3 1.26
v2.22.0
Features
- Support local mode for Amazon SageMaker Processing jobs
Bug Fixes and Other Changes
- Add API enhancements for SMP
- adjust naming convention; fix links
- lower value used in featurestore test
Documentation Changes
- Update GTDD instructions
v2.21.0
Features
- remove D205 to enable PEP257 Docstring Conventions
Bug Fixes and Other Changes
- Pin smdebug-rulesconfig to 1.0.0
- use itertuples to ingest pandas dataframe to FeatureStore
v2.20.0
Features
- add dataset definition support for processing jobs
Bug Fixes and Other Changes
- include workflow integ tests with clarify and debugger enabled
- only run DataParallel and EdgePackaging tests in supported regions
Documentation Changes
- fix smp code example, add note for CUDA 11 to sdp
- adding note about CUDA 11 to SMP. Small title update PyTorch
v2.19.0
Features
- add tensorflow 1.15.4 and 2.3.1 as valid versions
- add py36 as valid python version for pytorch 1.6.0
- auto-select container version for p4d and smdistributed
- add edge packaging job support
- Add Clarify Processor, Model Bias, Explainability, and Quality Monitors support. (#494)
- add model parallelism support
- add data parallelism support (#454) (#511)
- support creating and updating profiler in training job (#444) (#526)
Bug Fixes and Other Changes
- bump boto3 and smdebug_rulesconfig versions for reinvent and enable data parallel integ tests
- run UpdateTrainingJob tests only during allowed secondary status
- Remove workarounds and apply fixes to Clarify and MM integ tests
- add p4d to smdataparallel supported instances
- Mount metadata directory when starting local mode docker container
- add integ test for profiler
- Re-enable model monitor integration tests.
Documentation Changes
- add SageMaker distributed libraries documentation
- update documentation for the new SageMaker Debugger APIs
- minor updates to doc strings