Skip to content

Releases: aws/sagemaker-python-sdk

v1.58.1

11 May 17:50

Choose a tag to compare

Bug Fixes and Other Changes

  • upgrade boto3 to 1.13.6

v1.58.0

08 May 22:44

Choose a tag to compare

Features

  • support inter container traffic encryption for processing jobs

Documentation Changes

  • add note that v2.0.0 plans have been posted

v1.57.0

07 May 17:49

Choose a tag to compare

Features

  • add tensorflow training 1.15.2 py37 support
  • PyTorch 1.5.0 support

v1.56.3

06 May 17:51

Choose a tag to compare

Bug Fixes and Other Changes

  • update xgboost latest image version

v1.56.2

05 May 18:57

Choose a tag to compare

Bug Fixes and Other Changes

  • training_config returns MetricDefinitions
  • preserve inference script in model repack.

Testing and Release Infrastructure

  • support Python 3.7

v1.56.1.post1

29 Apr 18:46

Choose a tag to compare

Documentation Changes

  • document model.tar.gz structure for MXNet and PyTorch
  • add documentation for EstimatorBase parameters missing from docstring

v1.56.1.post0

28 Apr 17:47

Choose a tag to compare

Testing and Release Infrastructure

  • add doc8 check for documentation files

v1.56.1

27 Apr 19:55

Choose a tag to compare

Bug Fixes and Other Changes

  • add super() call in Local Mode DataSource subclasses
  • fix xgboost image incorrect latest version warning
  • allow output_path without trailing slash in Local Mode training jobs
  • allow S3 folder input to contain a trailing slash in Local Mode

Documentation Changes

  • Add namespace-based setup for SageMaker Operators for Kubernetes
  • Add note about file URLs for Estimator methods in Local Mode

v1.56.0

24 Apr 17:41

Choose a tag to compare

Features

  • add EIA support for TFS 1.15.0 and 2.0.0

Bug Fixes and Other Changes

  • use format strings intead of os.path.join for Unix paths for Processing Jobs

v1.55.4

17 Apr 02:56

Choose a tag to compare

Bug Fixes and Other Changes

  • use valid encryption key arg for S3 downloads
  • update sagemaker pytorch containers to external link
  • allow specifying model name when creating a Transformer from an Estimator
  • allow specifying model name in create_model() for TensorFlow, SKLearn, and XGBoost
  • allow specifying model name in create_model() for Chainer, MXNet, PyTorch, and RL

Documentation Changes

  • fix wget endpoints
  • add Adobe Analytics; upgrade Sphinx and docs environment
  • Explain why default model_fn loads PyTorch-EI models to CPU by default
  • Set theme in conf.py
  • correct transform()'s wait default value to "False"

Testing and Release Infrastructure

  • move unit tests for updating an endpoint to test_deploy.py
  • move Neo unit tests to a new file and directly use the Model class
  • move Model.deploy unit tests to separate file
  • add Model unit tests for delete_model and enable_network_isolation
  • skip integ tests in PR build if only unit tests are modified
  • add Model unit tests for prepare_container_def and _create_sagemaker_model
  • use Model class for model deployment unit tests
  • split model unit tests by Model, FrameworkModel, and ModelPackage
  • add Model unit tests for all transformer() params
  • add TF batch transform integ test with KMS and network isolation
  • use pytest fixtures in batch transform integ tests to train and upload to S3 only once
  • improve unit tests for creating Transformers and transform jobs
  • add PyTorch + custom model bucket batch transform integ test