Releases: aws/sagemaker-python-sdk
Releases · aws/sagemaker-python-sdk
v1.50.8
Bug Fixes and Other Changes
- disable Debugger defaults in unsupported regions
- modify session and kms_utils to check for S3 bucket before creation
- update docker-compose and PyYAML dependencies
- enable smdebug for Horovod (MPI) training setup
- create lib dir for dependencies safely (only if it doesn't exist yet).
- create the correct session for MultiDataModel
Documentation Changes
- update links to the local mode notebooks examples.
- Remove outdated badges from README
- update links to TF notebook examples to link to script mode examples.
- clean up headings, verb tenses, names, etc. in MXNet overview
- Update SageMaker operator Helm chart installation guide
Testing and Release Infrastructure
- choose faster notebook for notebook PR build
- properly fail PR build if has-matching-changes fails
- properly fail PR build if has-matching-changes fails
v1.50.7
Bug fixes and other changes
- do not use script for TFS when entry_point is not provided
- remove usage of pkg_resources
- update py2 warning message since python 2 is deprecated
- cleanup experiments, trials, and trial components in integ tests
v1.50.6.post0
Documentation changes
- add additional information to Transformer class transform function doc string
v1.50.6
Bug fixes and other changes
- Append serving to model framework name for PyTorch, MXNet, and TensorFlow
v1.50.5
Bug fixes and other changes
- Use serving_image_uri for Airflow
Documentation changes
- revise Processing docstrings for formatting and class links
- Add processing readthedocs
v1.50.4
Bug fixes and other changes
- Remove version number from default version comment
- remove remaining instances of python-dateutil pin
- upgrade boto3 and remove python-dateutil pin
Documentation changes
- Add issue templates and configure issue template chooser
- Update error type in delete_endpoint docstring
- add version requirement for using "requirements.txt" when serving an MXNet model
- update container dependency versions for MXNet and PyTorch
- Update supported versions of PyTorch
v1.50.3
Bug fixes and other changes
- ignore private Automatic Model Tuning hyperparameter when attaching AlgorithmEstimator
Documentation changes
- add Debugger API docs
v1.50.2
Bug fixes and other changes
- add tests to quick canary
- honor 'wait' flag when updating endpoint
- add default framework version warning message in Model classes
- Adding role arn explanation for sagemaker role
- allow predictor to be returned from AutoML.deploy()
- add PR checklist item about unique_name_from_base()
- use unique_name_from_base for multi-algo tuning test
- update copyright year in license header
Documentation changes
- add version requirement for using "requirement.txt" when serving a PyTorch model
- add SageMaker Debugger overview
- clarify requirements.txt usage for Chainer, MXNet, and Scikit-learn
- change "associate" to "create" for OpenID connector
- fix typo and improve clarity on installing packages via "requirements.txt"
v1.50.1
Bug fixes and other changes
- fix PyTorchModel deployment crash on Windows
- make PyTorch empty framework_version warning include the latest PyTorch version
v1.50.0
Features
- allow disabling debugger_hook_config
Bug fixes and other changes
- relax urllib3 and requests restrictions.
- Add uri as return statement for upload_string_as_file_body
- refactor logic in fw_utils and fill in docstrings
- increase poll from 5 to 30 for DescribeEndpoint lambda.
- fix test_auto_ml tests for regions without ml.c4.xlarge hosts.
- fix test_processing for regions without m4.xlarge instances.
- reduce test's describe frequency to eliminate throttling error.
- Increase number of retries when describing an endpoint since tf-2.0 has larger images and takes longer to start.
Documentation changes
- generalize Model Monitor documentation from SageMaker Studio tutorial