|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "36f63340-79b9-4f61-a6a3-c4883071c0b3", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Benchmark results aggregator\n", |
| 9 | + "\n", |
| 10 | + "This notebook helps to aggregate the benchmark results collected from a DynamoDB table." |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "code", |
| 15 | + "execution_count": 4, |
| 16 | + "id": "6522fc8a931ffbc3", |
| 17 | + "metadata": { |
| 18 | + "ExecuteTime": { |
| 19 | + "end_time": "2024-12-17T16:15:52.368674Z", |
| 20 | + "start_time": "2024-12-17T16:15:51.425605Z" |
| 21 | + } |
| 22 | + }, |
| 23 | + "outputs": [], |
| 24 | + "source": [ |
| 25 | + "%%capture --no-display\n", |
| 26 | + "%load_ext autoreload\n", |
| 27 | + "%autoreload 2\n", |
| 28 | + "\n", |
| 29 | + "%pip install -q boto3 numpy pandas python-dotenv openpyxl" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "markdown", |
| 34 | + "id": "d4a896ce-8398-4d20-8270-7f5b77206d2b", |
| 35 | + "metadata": {}, |
| 36 | + "source": [ |
| 37 | + "### Initialization (imports and constants)" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": 5, |
| 43 | + "id": "a371fc9062af6126", |
| 44 | + "metadata": { |
| 45 | + "ExecuteTime": { |
| 46 | + "end_time": "2024-12-17T16:15:52.388081Z", |
| 47 | + "start_time": "2024-12-17T16:15:52.375379Z" |
| 48 | + } |
| 49 | + }, |
| 50 | + "outputs": [], |
| 51 | + "source": [ |
| 52 | + "import os\n", |
| 53 | + "\n", |
| 54 | + "from dotenv import load_dotenv\n", |
| 55 | + "\n", |
| 56 | + "# Define the environment variables below in a \".env\" file: `load_dotenv()`\n", |
| 57 | + "# will source them automatically.\n", |
| 58 | + "load_dotenv()\n", |
| 59 | + "\n", |
| 60 | + "# AWS region and table name for where the benchmark results are stored.\n", |
| 61 | + "REGION = os.environ.get(\"DYNAMODB_REGION\")\n", |
| 62 | + "TABLE = os.environ.get(\"DYNAMODB_TABLE\")\n", |
| 63 | + "\n", |
| 64 | + "# S3 Connector for PyTorch versions to query, to compare benchmark results.\n", |
| 65 | + "PREVIOUS_VERSION = \"1.2.7\"\n", |
| 66 | + "NEXT_VERSION = \"1.3.0\"" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "markdown", |
| 71 | + "id": "b06aa712-e2c1-48ea-8cc1-a8cd14701cf9", |
| 72 | + "metadata": {}, |
| 73 | + "source": [ |
| 74 | + "### Functions" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "code", |
| 79 | + "execution_count": 9, |
| 80 | + "id": "e14b9efad6ae3ad6", |
| 81 | + "metadata": { |
| 82 | + "ExecuteTime": { |
| 83 | + "end_time": "2024-12-17T16:16:16.363274Z", |
| 84 | + "start_time": "2024-12-17T16:16:16.348512Z" |
| 85 | + } |
| 86 | + }, |
| 87 | + "outputs": [], |
| 88 | + "source": [ |
| 89 | + "from datetime import datetime\n", |
| 90 | + "from typing import List\n", |
| 91 | + "\n", |
| 92 | + "import numpy as np\n", |
| 93 | + "import boto3\n", |
| 94 | + "\n", |
| 95 | + "\n", |
| 96 | + "def query_dynamodb(\n", |
| 97 | + " region: str, table_name: str, old_version: str, new_version: str\n", |
| 98 | + ") -> List[dict]:\n", |
| 99 | + " \"\"\"Query DynamoDB for the latest run results.\"\"\"\n", |
| 100 | + " dynamodb = boto3.resource(\"dynamodb\", region_name=region)\n", |
| 101 | + "\n", |
| 102 | + " statement = f'SELECT * FROM \"{table_name}\" WHERE s3torchconnector_version IN [?, ?]'\n", |
| 103 | + " params = [old_version, new_version]\n", |
| 104 | + " response = dynamodb.meta.client.execute_statement(\n", |
| 105 | + " Statement=statement, Parameters=params\n", |
| 106 | + " )\n", |
| 107 | + "\n", |
| 108 | + " return response[\"Items\"]\n", |
| 109 | + "\n", |
| 110 | + "\n", |
| 111 | + "def transform(run_results: List[dict]) -> List[dict]:\n", |
| 112 | + " \"\"\"Build a list of row to be later concatenated in a :class:`pd.DataFrame`.\"\"\"\n", |
| 113 | + " rows = []\n", |
| 114 | + " for run_result in run_results:\n", |
| 115 | + " for job_result in run_result[\"job_results\"]:\n", |
| 116 | + " metrics_averaged = {\n", |
| 117 | + " k: float(np.mean(v)) # `float()` to cast away the `Decimal` part\n", |
| 118 | + " for k, v in job_result[\"metrics\"].items()\n", |
| 119 | + " if k != \"utilization\"\n", |
| 120 | + " }\n", |
| 121 | + " row = {\n", |
| 122 | + " \"version\": run_result[\"s3torchconnector_version\"],\n", |
| 123 | + " \"scenario\": run_result[\"scenario\"],\n", |
| 124 | + " \"disambiguator\": run_result.get(\"disambiguator\"),\n", |
| 125 | + " \"timestamp_utc\": datetime.fromtimestamp(\n", |
| 126 | + " float(run_result[\"timestamp_utc\"])\n", |
| 127 | + " ),\n", |
| 128 | + " **metrics_averaged,\n", |
| 129 | + " \"config\": job_result[\"config\"],\n", |
| 130 | + " }\n", |
| 131 | + " rows.append(row)\n", |
| 132 | + "\n", |
| 133 | + " return rows" |
| 134 | + ] |
| 135 | + }, |
| 136 | + { |
| 137 | + "cell_type": "markdown", |
| 138 | + "id": "94f68eef52fb0b5c", |
| 139 | + "metadata": {}, |
| 140 | + "source": [ |
| 141 | + "### Exploit data" |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_type": "code", |
| 146 | + "execution_count": 10, |
| 147 | + "id": "be008fb6acf09055", |
| 148 | + "metadata": { |
| 149 | + "ExecuteTime": { |
| 150 | + "end_time": "2024-12-17T16:16:18.143297Z", |
| 151 | + "start_time": "2024-12-17T16:16:18.040538Z" |
| 152 | + } |
| 153 | + }, |
| 154 | + "outputs": [], |
| 155 | + "source": [ |
| 156 | + "_run_results = query_dynamodb(REGION, TABLE, PREVIOUS_VERSION, NEXT_VERSION)" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "code", |
| 161 | + "execution_count": null, |
| 162 | + "id": "ac3597a1", |
| 163 | + "metadata": { |
| 164 | + "ExecuteTime": { |
| 165 | + "end_time": "2024-12-17T16:16:18.808673Z", |
| 166 | + "start_time": "2024-12-17T16:16:18.782056Z" |
| 167 | + } |
| 168 | + }, |
| 169 | + "outputs": [], |
| 170 | + "source": [ |
| 171 | + "import pandas as pd\n", |
| 172 | + "\n", |
| 173 | + "_data = transform(_run_results)\n", |
| 174 | + "_table = pd.json_normalize(_data).set_index(\"version\")\n", |
| 175 | + "_table" |
| 176 | + ] |
| 177 | + }, |
| 178 | + { |
| 179 | + "cell_type": "code", |
| 180 | + "execution_count": 13, |
| 181 | + "id": "b4eed2752e6add17", |
| 182 | + "metadata": { |
| 183 | + "ExecuteTime": { |
| 184 | + "end_time": "2024-12-17T16:16:56.380528Z", |
| 185 | + "start_time": "2024-12-17T16:16:56.365683Z" |
| 186 | + } |
| 187 | + }, |
| 188 | + "outputs": [], |
| 189 | + "source": [ |
| 190 | + "import string\n", |
| 191 | + "import random\n", |
| 192 | + "\n", |
| 193 | + "_suffix = \"\".join(random.choices(string.ascii_letters, k=5))\n", |
| 194 | + "_table.to_csv(f\"benchmark_results_{_suffix}.csv\")" |
| 195 | + ] |
| 196 | + } |
| 197 | + ], |
| 198 | + "metadata": { |
| 199 | + "kernelspec": { |
| 200 | + "display_name": "venv", |
| 201 | + "language": "python", |
| 202 | + "name": "python3" |
| 203 | + }, |
| 204 | + "language_info": { |
| 205 | + "codemirror_mode": { |
| 206 | + "name": "ipython", |
| 207 | + "version": 3 |
| 208 | + }, |
| 209 | + "file_extension": ".py", |
| 210 | + "mimetype": "text/x-python", |
| 211 | + "name": "python", |
| 212 | + "nbconvert_exporter": "python", |
| 213 | + "pygments_lexer": "ipython3", |
| 214 | + "version": "3.12.6" |
| 215 | + } |
| 216 | + }, |
| 217 | + "nbformat": 4, |
| 218 | + "nbformat_minor": 5 |
| 219 | +} |
0 commit comments