|
4 | 4 | import pytest |
5 | 5 | import torch |
6 | 6 | import torch.distributed.checkpoint as dcp |
| 7 | + |
| 8 | +import torch.distributed as dist |
7 | 9 | from torch.distributed.checkpoint import CheckpointException |
| 10 | +import torch.multiprocessing as mp |
8 | 11 |
|
9 | 12 | from s3torchconnector.dcp import S3StorageWriter, S3StorageReader |
| 13 | +from s3torchconnector._s3client import S3Client |
| 14 | +from s3torchconnector._s3dataset_common import parse_s3_uri |
| 15 | +import os |
| 16 | +import random |
| 17 | + |
| 18 | + |
| 19 | +def generate_random_port(): |
| 20 | + return random.randint(1, 500) |
| 21 | + |
| 22 | + |
| 23 | +def setup(rank, world_size, port): |
| 24 | + os.environ["MASTER_ADDR"] = "localhost" |
| 25 | + os.environ["MASTER_PORT"] = port |
| 26 | + dist.init_process_group("gloo", rank=rank, world_size=world_size) |
| 27 | + |
| 28 | + |
| 29 | +def cleanup(): |
| 30 | + dist.destroy_process_group() |
| 31 | + |
| 32 | + |
| 33 | +def run( |
| 34 | + rank, |
| 35 | + world_size, |
| 36 | + threads, |
| 37 | + region, |
| 38 | + s3_path_s3storagewriter, |
| 39 | + test_data, |
| 40 | + port, |
| 41 | +): |
| 42 | + print(f"Running on rank {rank}.") |
| 43 | + |
| 44 | + setup(rank, world_size, port) |
| 45 | + # Save using S3StorageWriter |
| 46 | + dcp_save( |
| 47 | + test_data, |
| 48 | + S3StorageWriter( |
| 49 | + region=region, |
| 50 | + thread_count=threads, |
| 51 | + path=s3_path_s3storagewriter, |
| 52 | + overwrite=True, |
| 53 | + ), |
| 54 | + ) |
| 55 | + |
| 56 | + cleanup() |
| 57 | + |
| 58 | + |
| 59 | +def multi_process_dcp_save_load( |
| 60 | + world_size, thread_count, checkpoint_directory, tensor_dimensions, port_offset |
| 61 | +): |
| 62 | + region = checkpoint_directory.region |
| 63 | + s3_path_s3storagewriter = f"{checkpoint_directory.s3_uri}checkpoint_s3storagewriter" |
| 64 | + s3_path_s3storagewriter = s3_path_s3storagewriter.replace("[", "_").replace( |
| 65 | + "]", "_" |
| 66 | + ) |
| 67 | + |
| 68 | + test_data = { |
| 69 | + "tensor1": torch.randn(tensor_dimensions), |
| 70 | + "tensor2": torch.randn(5, 5), |
| 71 | + "scalar": torch.tensor(3.14), |
| 72 | + } |
| 73 | + |
| 74 | + port = str(generate_random_port() + port_offset) |
| 75 | + mp.spawn( |
| 76 | + run, |
| 77 | + args=( |
| 78 | + world_size, |
| 79 | + thread_count, |
| 80 | + region, |
| 81 | + s3_path_s3storagewriter, |
| 82 | + test_data, |
| 83 | + port, |
| 84 | + ), |
| 85 | + nprocs=world_size, |
| 86 | + join=True, |
| 87 | + ) |
| 88 | + |
| 89 | + load_data( |
| 90 | + region, |
| 91 | + s3_path_s3storagewriter, |
| 92 | + test_data, |
| 93 | + world_size, |
| 94 | + thread_count, |
| 95 | + ) |
| 96 | + |
| 97 | + |
| 98 | +def dcp_save(data, writer): |
| 99 | + dcp.save( |
| 100 | + data, |
| 101 | + storage_writer=writer, |
| 102 | + ) |
| 103 | + |
| 104 | + |
| 105 | +def dcp_load(loaded_data, reader): |
| 106 | + dcp.load( |
| 107 | + loaded_data, |
| 108 | + storage_reader=reader, |
| 109 | + ) |
| 110 | + |
| 111 | + |
| 112 | +def load_data(region, s3_path_s3storagewriter, test_data, world_size, thread_count): |
| 113 | + s3_client = S3Client(region=region) |
| 114 | + bucket, key = parse_s3_uri(s3_path_s3storagewriter) |
| 115 | + list_result_s3storagewriter = list(s3_client.list_objects(bucket, f"{key}/")) |
| 116 | + |
| 117 | + # Compare length |
| 118 | + assert list_result_s3storagewriter is not None |
| 119 | + assert ( |
| 120 | + len(list_result_s3storagewriter[0].object_info) == world_size * thread_count + 1 |
| 121 | + ) |
| 122 | + |
| 123 | + # Load using S3StorageReader |
| 124 | + loaded_data_s3storagereader = {} |
| 125 | + dcp_load( |
| 126 | + loaded_data_s3storagereader, |
| 127 | + S3StorageReader( |
| 128 | + region, |
| 129 | + s3_path_s3storagewriter, |
| 130 | + ), |
| 131 | + ) |
| 132 | + |
| 133 | + for key in loaded_data_s3storagereader.keys(): |
| 134 | + assert torch.allclose( |
| 135 | + loaded_data_s3storagereader[key], test_data[key] |
| 136 | + ), f"S3StorageReader: Loaded tensor for key '{key}' does not match original" |
| 137 | + |
| 138 | + print("Test passed: Saved and loaded data correctly.") |
| 139 | + |
| 140 | + |
| 141 | +@pytest.mark.parametrize( |
| 142 | + "tensor_dimensions, thread_count, port_offset", |
| 143 | + [ |
| 144 | + ([3, 2], 1, 20000), |
| 145 | + ([10, 1024, 1024], 1, 30000), |
| 146 | + ([3, 2], 4, 40000), |
| 147 | + ([10, 1024, 1024], 4, 50000), |
| 148 | + ], |
| 149 | + ids=[ |
| 150 | + "small_tensor_single_thread", |
| 151 | + "large_tensor_single_thread", |
| 152 | + "small_tensor_multi_thread", |
| 153 | + "large_tensor_multi_thread", |
| 154 | + ], |
| 155 | +) |
| 156 | +def test_dcp_when_multi_process( |
| 157 | + checkpoint_directory, tensor_dimensions, thread_count, port_offset |
| 158 | +): |
| 159 | + multi_process_dcp_save_load( |
| 160 | + 6, thread_count, checkpoint_directory, tensor_dimensions, port_offset |
| 161 | + ) |
| 162 | + |
| 163 | + |
| 164 | +def test_dcp_save_non_existing_s3_uri(checkpoint_directory): |
| 165 | + t1 = torch.randn(10) |
| 166 | + region = checkpoint_directory.region |
| 167 | + non_existing_s3_uri = "s3://non-existing-bucket/checkpoint" |
10 | 168 |
|
| 169 | + with pytest.raises(CheckpointException) as s3_excinfo: |
| 170 | + dcp_save( |
| 171 | + {"random": t1}, |
| 172 | + S3StorageWriter( |
| 173 | + region, |
| 174 | + non_existing_s3_uri, |
| 175 | + overwrite=True, |
| 176 | + ), |
| 177 | + ) |
| 178 | + |
| 179 | + assert isinstance( |
| 180 | + s3_excinfo.value, CheckpointException |
| 181 | + ), "Using S3StorageWriter DCP should raise a CheckpointException" |
| 182 | + |
| 183 | + print("Test passed: Raised CheckpointException.") |
| 184 | + |
| 185 | + |
| 186 | +def test_dcp_load_non_existing_s3_uri(checkpoint_directory): |
| 187 | + region = checkpoint_directory.region |
| 188 | + non_existing_s3_uri = "s3://non-existing-bucket/checkpoint" |
| 189 | + |
| 190 | + with pytest.raises(CheckpointException) as s3_excinfo: |
| 191 | + dcp_load( |
| 192 | + {}, |
| 193 | + S3StorageReader( |
| 194 | + region, |
| 195 | + non_existing_s3_uri, |
| 196 | + ), |
| 197 | + ) |
11 | 198 |
|
12 | | -def test_fsdp_filesystem_when_single_thread(checkpoint_directory): |
13 | | - # TODO: implement me |
14 | | - pass |
| 199 | + assert isinstance( |
| 200 | + s3_excinfo.value, CheckpointException |
| 201 | + ), "Using S3StorageReader DCP should raise a CheckpointException" |
15 | 202 |
|
| 203 | + print("Test passed: Raised CheckpointException.") |
16 | 204 |
|
17 | | -def test_fsdp_filesystem_when_multiple_threads(checkpoint_directory): |
18 | | - # TODO: implement me |
19 | | - pass |
| 205 | + |
| 206 | +def test_successful_rename(checkpoint_directory): |
| 207 | + src_path = f"{checkpoint_directory.s3_uri}test_rename_src" |
| 208 | + test_data = { |
| 209 | + "tensor1": torch.randn(10, 10), |
| 210 | + "tensor2": torch.randn(5, 5), |
| 211 | + "scalar": torch.tensor(3.14), |
| 212 | + } |
| 213 | + region = checkpoint_directory.region |
| 214 | + |
| 215 | + # Test S3StorageWriter |
| 216 | + s3_writer = S3StorageWriter(region, src_path, overwrite=False) |
| 217 | + dcp_save(test_data, s3_writer) |
| 218 | + s3_writer.fs.rename(f"{src_path}/.metadata", f"{src_path}/.metadata2") |
| 219 | + |
| 220 | + assert not s3_writer.fs.exists(f"{src_path}/.metadata") |
| 221 | + assert s3_writer.fs.exists(f"{src_path}/.metadata2") |
| 222 | + |
| 223 | + print("Test passed: Rename was successful.") |
| 224 | + |
| 225 | + |
| 226 | +def test_rename_non_existing_s3_uri(checkpoint_directory): |
| 227 | + region = checkpoint_directory.region |
| 228 | + non_existing_s3_uri = f"{checkpoint_directory.s3_uri}non-existing-object" |
| 229 | + storage_writer = S3StorageWriter(region, non_existing_s3_uri, overwrite=True) |
| 230 | + |
| 231 | + with pytest.raises(Exception, match="Service error: The object was not found"): |
| 232 | + storage_writer.fs.rename( |
| 233 | + f"{non_existing_s3_uri}/.metadata", f"{non_existing_s3_uri}/.metadata2" |
| 234 | + ) |
| 235 | + |
| 236 | + print("Test passed: Raised object not found error.") |
| 237 | + |
| 238 | + |
| 239 | +def test_rm_file_non_existing_s3_uri(checkpoint_directory): |
| 240 | + region = checkpoint_directory.region |
| 241 | + non_existing_s3_uri = f"{checkpoint_directory.s3_uri}non-existing-object-hooo" |
| 242 | + storage_writer = S3StorageWriter(region, non_existing_s3_uri, overwrite=True) |
| 243 | + storage_writer.fs.rm_file(non_existing_s3_uri) |
| 244 | + |
| 245 | + print( |
| 246 | + "Test passed: In case of delete did not throw error if the object was not found." |
| 247 | + ) |
20 | 248 |
|
21 | 249 |
|
22 | 250 | # Inspired from https://github.com/pytorch/pytorch/blob/main/test/distributed/checkpoint/test_fsspec.py. |
|
0 commit comments