|
| 1 | +"""OpenTelemetry metrics callback for Axolotl training""" |
| 2 | + |
| 3 | +import threading |
| 4 | +from typing import Dict, Optional |
| 5 | + |
| 6 | +from transformers import ( |
| 7 | + TrainerCallback, |
| 8 | + TrainerControl, |
| 9 | + TrainerState, |
| 10 | + TrainingArguments, |
| 11 | +) |
| 12 | + |
| 13 | +from axolotl.utils.logging import get_logger |
| 14 | + |
| 15 | +LOG = get_logger(__name__) |
| 16 | + |
| 17 | +try: |
| 18 | + from opentelemetry import metrics |
| 19 | + from opentelemetry.exporter.prometheus import PrometheusMetricReader |
| 20 | + from opentelemetry.metrics import set_meter_provider |
| 21 | + from opentelemetry.sdk.metrics import MeterProvider as SDKMeterProvider |
| 22 | + from prometheus_client import start_http_server |
| 23 | + |
| 24 | + OPENTELEMETRY_AVAILABLE = True |
| 25 | +except ImportError: |
| 26 | + LOG.warning("OpenTelemetry not available. pip install [opentelemetry]") |
| 27 | + OPENTELEMETRY_AVAILABLE = False |
| 28 | + |
| 29 | + |
| 30 | +class OpenTelemetryMetricsCallback(TrainerCallback): |
| 31 | + """ |
| 32 | + TrainerCallback that exports training metrics to OpenTelemetry/Prometheus. |
| 33 | +
|
| 34 | + This callback automatically tracks key training metrics including: |
| 35 | + - Training loss |
| 36 | + - Evaluation loss |
| 37 | + - Learning rate |
| 38 | + - Epoch progress |
| 39 | + - Global step count |
| 40 | + - Gradient norm |
| 41 | +
|
| 42 | + Metrics are exposed via HTTP endpoint for Prometheus scraping. |
| 43 | + """ |
| 44 | + |
| 45 | + def __init__(self, cfg): |
| 46 | + if not OPENTELEMETRY_AVAILABLE: |
| 47 | + LOG.warning("OpenTelemetry not available, metrics will not be collected") |
| 48 | + self.metrics_enabled = False |
| 49 | + return |
| 50 | + |
| 51 | + self.cfg = cfg |
| 52 | + self.metrics_host = getattr(cfg, "otel_metrics_host", "localhost") |
| 53 | + self.metrics_port = getattr(cfg, "otel_metrics_port", 8000) |
| 54 | + self.metrics_enabled = True |
| 55 | + self.server_started = False |
| 56 | + self.metrics_lock = threading.Lock() |
| 57 | + |
| 58 | + try: |
| 59 | + # Create Prometheus metrics reader |
| 60 | + prometheus_reader = PrometheusMetricReader() |
| 61 | + |
| 62 | + # Create meter provider with Prometheus exporter |
| 63 | + provider = SDKMeterProvider(metric_readers=[prometheus_reader]) |
| 64 | + set_meter_provider(provider) |
| 65 | + |
| 66 | + # Get meter for creating metrics |
| 67 | + self.meter = metrics.get_meter("axolotl.training") |
| 68 | + |
| 69 | + # Create metrics |
| 70 | + self._create_metrics() |
| 71 | + |
| 72 | + except Exception as e: |
| 73 | + LOG.warning(f"Failed to initialize OpenTelemetry metrics: {e}") |
| 74 | + self.metrics_enabled = False |
| 75 | + |
| 76 | + def _create_metrics(self): |
| 77 | + """Create all metrics that will be tracked""" |
| 78 | + self.train_loss_gauge = self.meter.create_gauge( |
| 79 | + name="axolotl_train_loss", |
| 80 | + description="Current training loss", |
| 81 | + unit="1", |
| 82 | + ) |
| 83 | + |
| 84 | + self.eval_loss_gauge = self.meter.create_gauge( |
| 85 | + name="axolotl_eval_loss", |
| 86 | + description="Current evaluation loss", |
| 87 | + unit="1", |
| 88 | + ) |
| 89 | + |
| 90 | + self.learning_rate_gauge = self.meter.create_gauge( |
| 91 | + name="axolotl_learning_rate", |
| 92 | + description="Current learning rate", |
| 93 | + unit="1", |
| 94 | + ) |
| 95 | + |
| 96 | + self.epoch_gauge = self.meter.create_gauge( |
| 97 | + name="axolotl_epoch", |
| 98 | + description="Current training epoch", |
| 99 | + unit="1", |
| 100 | + ) |
| 101 | + |
| 102 | + self.global_step_counter = self.meter.create_counter( |
| 103 | + name="axolotl_global_steps", |
| 104 | + description="Total training steps completed", |
| 105 | + unit="1", |
| 106 | + ) |
| 107 | + |
| 108 | + self.grad_norm_gauge = self.meter.create_gauge( |
| 109 | + name="axolotl_gradient_norm", |
| 110 | + description="Gradient norm", |
| 111 | + unit="1", |
| 112 | + ) |
| 113 | + |
| 114 | + self.memory_usage_gauge = self.meter.create_gauge( |
| 115 | + name="axolotl_memory_usage", |
| 116 | + description="Current memory usage in MB", |
| 117 | + unit="MB", |
| 118 | + ) |
| 119 | + |
| 120 | + def _start_metrics_server(self): |
| 121 | + """Start the HTTP server for metrics exposure""" |
| 122 | + if self.server_started: |
| 123 | + return |
| 124 | + |
| 125 | + try: |
| 126 | + start_http_server(self.metrics_port, addr=self.metrics_host) |
| 127 | + self.server_started = True |
| 128 | + LOG.info( |
| 129 | + f"OpenTelemetry metrics server started on http://{self.metrics_host}:{self.metrics_port}/metrics" |
| 130 | + ) |
| 131 | + |
| 132 | + except Exception as e: |
| 133 | + LOG.error(f"Failed to start OpenTelemetry metrics server: {e}") |
| 134 | + |
| 135 | + def on_train_begin( |
| 136 | + self, |
| 137 | + args: TrainingArguments, |
| 138 | + state: TrainerState, |
| 139 | + control: TrainerControl, |
| 140 | + **kwargs, |
| 141 | + ): |
| 142 | + """Called at the beginning of training""" |
| 143 | + if not self.metrics_enabled: |
| 144 | + return |
| 145 | + |
| 146 | + self._start_metrics_server() |
| 147 | + LOG.info("OpenTelemetry metrics collection started") |
| 148 | + |
| 149 | + def on_log( |
| 150 | + self, |
| 151 | + args: TrainingArguments, |
| 152 | + state: TrainerState, |
| 153 | + control: TrainerControl, |
| 154 | + logs: Optional[Dict[str, float]] = None, |
| 155 | + **kwargs, |
| 156 | + ): |
| 157 | + """Called when logging occurs""" |
| 158 | + if not self.metrics_enabled or not logs: |
| 159 | + return |
| 160 | + |
| 161 | + if "loss" in logs: |
| 162 | + self.train_loss_gauge.set(logs["loss"]) |
| 163 | + |
| 164 | + if "eval_loss" in logs: |
| 165 | + self.eval_loss_gauge.set(logs["eval_loss"]) |
| 166 | + |
| 167 | + if "learning_rate" in logs: |
| 168 | + self.learning_rate_gauge.set(logs["learning_rate"]) |
| 169 | + |
| 170 | + if "epoch" in logs: |
| 171 | + self.epoch_gauge.set(logs["epoch"]) |
| 172 | + |
| 173 | + if "grad_norm" in logs: |
| 174 | + self.grad_norm_gauge.set(logs["grad_norm"]) |
| 175 | + if "memory_usage" in logs: |
| 176 | + self.memory_usage_gauge.set(logs["memory_usage"]) |
| 177 | + |
| 178 | + def on_step_end( |
| 179 | + self, |
| 180 | + args: TrainingArguments, |
| 181 | + state: TrainerState, |
| 182 | + control: TrainerControl, |
| 183 | + **kwargs, |
| 184 | + ): |
| 185 | + """Called at the end of each training step""" |
| 186 | + if not self.metrics_enabled: |
| 187 | + return |
| 188 | + |
| 189 | + # Update step counter and epoch |
| 190 | + self.global_step_counter.add(1) |
| 191 | + if state.epoch is not None: |
| 192 | + self.epoch_gauge.set(state.epoch) |
| 193 | + |
| 194 | + def on_evaluate( |
| 195 | + self, |
| 196 | + args: TrainingArguments, |
| 197 | + state: TrainerState, |
| 198 | + control: TrainerControl, |
| 199 | + metrics: Optional[Dict[str, float]] = None, |
| 200 | + **kwargs, |
| 201 | + ): |
| 202 | + """Called after evaluation""" |
| 203 | + if not self.metrics_enabled or not metrics: |
| 204 | + return |
| 205 | + |
| 206 | + if "eval_loss" in metrics: |
| 207 | + self.eval_loss_gauge.set(metrics["eval_loss"]) |
| 208 | + |
| 209 | + # Record any other eval metrics as gauges |
| 210 | + for key, value in metrics.items(): |
| 211 | + if key.startswith("eval_") and isinstance(value, (int, float)): |
| 212 | + # Create gauge for this metric if it doesn't exist |
| 213 | + gauge_name = f"axolotl_{key}" |
| 214 | + try: |
| 215 | + gauge = self.meter.create_gauge( |
| 216 | + name=gauge_name, |
| 217 | + description=f"Evaluation metric: {key}", |
| 218 | + unit="1", |
| 219 | + ) |
| 220 | + gauge.set(value) |
| 221 | + except Exception as e: |
| 222 | + LOG.warning(f"Failed to create/update metric {gauge_name}: {e}") |
| 223 | + |
| 224 | + def on_train_end( |
| 225 | + self, |
| 226 | + args: TrainingArguments, |
| 227 | + state: TrainerState, |
| 228 | + control: TrainerControl, |
| 229 | + **kwargs, |
| 230 | + ): |
| 231 | + """Called at the end of training""" |
| 232 | + if not self.metrics_enabled: |
| 233 | + return |
| 234 | + |
| 235 | + LOG.info("Training completed. OpenTelemetry metrics collection finished.") |
| 236 | + LOG.info( |
| 237 | + f"Metrics are still available at http://{self.metrics_host}:{self.metrics_port}/metrics" |
| 238 | + ) |
0 commit comments