diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/_meta.json b/sdk/documentintelligence/azure-ai-documentintelligence/_meta.json new file mode 100644 index 000000000000..b3537199f6dc --- /dev/null +++ b/sdk/documentintelligence/azure-ai-documentintelligence/_meta.json @@ -0,0 +1,6 @@ +{ + "commit": "e6ae33c2dc2c450ddd1147342b048a4ccd49323e", + "repository_url": "https://github.com/test-repo-billy/azure-rest-api-specs", + "typespec_src": "specification/ai/DocumentIntelligence", + "@azure-tools/typespec-python": "0.31.1" +} \ No newline at end of file diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/__init__.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/__init__.py index 901d45070aa5..5691d1f77801 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/__init__.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/__init__.py @@ -6,21 +6,23 @@ # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -from ._patch import DocumentIntelligenceClient -from ._patch import DocumentIntelligenceAdministrationClient +from ._client import DocumentIntelligenceClient +from ._client import DocumentIntelligenceAdministrationClient from ._version import VERSION __version__ = VERSION - -from ._patch import AnalyzeDocumentLROPoller +try: + from ._patch import __all__ as _patch_all + from ._patch import * # pylint: disable=unused-wildcard-import +except ImportError: + _patch_all = [] from ._patch import patch_sdk as _patch_sdk __all__ = [ - "AnalyzeDocumentLROPoller", "DocumentIntelligenceClient", "DocumentIntelligenceAdministrationClient", ] - +__all__.extend([p for p in _patch_all if p not in __all__]) _patch_sdk() diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_model_base.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_model_base.py index c4b1008c1e85..12ad7f29c71e 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_model_base.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_model_base.py @@ -4,7 +4,7 @@ # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- -# pylint: disable=protected-access, arguments-differ, signature-differs, broad-except +# pylint: disable=protected-access, arguments-differ, signature-differs, broad-except, too-many-lines import copy import calendar @@ -19,6 +19,7 @@ import email.utils from datetime import datetime, date, time, timedelta, timezone from json import JSONEncoder +import xml.etree.ElementTree as ET from typing_extensions import Self import isodate from azure.core.exceptions import DeserializationError @@ -123,7 +124,7 @@ def _serialize_datetime(o, format: typing.Optional[str] = None): def _is_readonly(p): try: - return p._visibility == ["read"] # pylint: disable=protected-access + return p._visibility == ["read"] except AttributeError: return False @@ -286,6 +287,12 @@ def _deserialize_decimal(attr): return decimal.Decimal(str(attr)) +def _deserialize_int_as_str(attr): + if isinstance(attr, int): + return attr + return int(attr) + + _DESERIALIZE_MAPPING = { datetime: _deserialize_datetime, date: _deserialize_date, @@ -307,9 +314,11 @@ def _deserialize_decimal(attr): def get_deserializer(annotation: typing.Any, rf: typing.Optional["_RestField"] = None): + if annotation is int and rf and rf._format == "str": + return _deserialize_int_as_str if rf and rf._format: return _DESERIALIZE_MAPPING_WITHFORMAT.get(rf._format) - return _DESERIALIZE_MAPPING.get(annotation) + return _DESERIALIZE_MAPPING.get(annotation) # pyright: ignore def _get_type_alias_type(module_name: str, alias_name: str): @@ -441,6 +450,10 @@ def _serialize(o, format: typing.Optional[str] = None): # pylint: disable=too-m return float(o) if isinstance(o, enum.Enum): return o.value + if isinstance(o, int): + if format == "str": + return str(o) + return o try: # First try datetime.datetime return _serialize_datetime(o, format) @@ -471,6 +484,8 @@ def _create_value(rf: typing.Optional["_RestField"], value: typing.Any) -> typin return value if rf._is_model: return _deserialize(rf._type, value) + if isinstance(value, ET.Element): + value = _deserialize(rf._type, value) return _serialize(value, rf._format) @@ -489,10 +504,58 @@ def __init__(self, *args: typing.Any, **kwargs: typing.Any) -> None: for rest_field in self._attr_to_rest_field.values() if rest_field._default is not _UNSET } - if args: - dict_to_pass.update( - {k: _create_value(_get_rest_field(self._attr_to_rest_field, k), v) for k, v in args[0].items()} - ) + if args: # pylint: disable=too-many-nested-blocks + if isinstance(args[0], ET.Element): + existed_attr_keys = [] + model_meta = getattr(self, "_xml", {}) + + for rf in self._attr_to_rest_field.values(): + prop_meta = getattr(rf, "_xml", {}) + xml_name = prop_meta.get("name", rf._rest_name) + xml_ns = prop_meta.get("ns", model_meta.get("ns", None)) + if xml_ns: + xml_name = "{" + xml_ns + "}" + xml_name + + # attribute + if prop_meta.get("attribute", False) and args[0].get(xml_name) is not None: + existed_attr_keys.append(xml_name) + dict_to_pass[rf._rest_name] = _deserialize(rf._type, args[0].get(xml_name)) + continue + + # unwrapped element is array + if prop_meta.get("unwrapped", False): + # unwrapped array could either use prop items meta/prop meta + if prop_meta.get("itemsName"): + xml_name = prop_meta.get("itemsName") + xml_ns = prop_meta.get("itemNs") + if xml_ns: + xml_name = "{" + xml_ns + "}" + xml_name + items = args[0].findall(xml_name) # pyright: ignore + if len(items) > 0: + existed_attr_keys.append(xml_name) + dict_to_pass[rf._rest_name] = _deserialize(rf._type, items) + continue + + # text element is primitive type + if prop_meta.get("text", False): + if args[0].text is not None: + dict_to_pass[rf._rest_name] = _deserialize(rf._type, args[0].text) + continue + + # wrapped element could be normal property or array, it should only have one element + item = args[0].find(xml_name) + if item is not None: + existed_attr_keys.append(xml_name) + dict_to_pass[rf._rest_name] = _deserialize(rf._type, item) + + # rest thing is additional properties + for e in args[0]: + if e.tag not in existed_attr_keys: + dict_to_pass[e.tag] = _convert_element(e) + else: + dict_to_pass.update( + {k: _create_value(_get_rest_field(self._attr_to_rest_field, k), v) for k, v in args[0].items()} + ) else: non_attr_kwargs = [k for k in kwargs if k not in self._attr_to_rest_field] if non_attr_kwargs: @@ -541,12 +604,10 @@ def __init_subclass__(cls, discriminator: typing.Optional[str] = None) -> None: base.__mapping__[discriminator or cls.__name__] = cls # type: ignore # pylint: disable=no-member @classmethod - def _get_discriminator(cls, exist_discriminators) -> typing.Optional[str]: + def _get_discriminator(cls, exist_discriminators) -> typing.Optional["_RestField"]: for v in cls.__dict__.values(): - if ( - isinstance(v, _RestField) and v._is_discriminator and v._rest_name not in exist_discriminators - ): # pylint: disable=protected-access - return v._rest_name # pylint: disable=protected-access + if isinstance(v, _RestField) and v._is_discriminator and v._rest_name not in exist_discriminators: + return v return None @classmethod @@ -554,11 +615,25 @@ def _deserialize(cls, data, exist_discriminators): if not hasattr(cls, "__mapping__"): # pylint: disable=no-member return cls(data) discriminator = cls._get_discriminator(exist_discriminators) - exist_discriminators.append(discriminator) - mapped_cls = cls.__mapping__.get(data.get(discriminator), cls) # pyright: ignore # pylint: disable=no-member - if mapped_cls == cls: + if discriminator is None: return cls(data) - return mapped_cls._deserialize(data, exist_discriminators) # pylint: disable=protected-access + exist_discriminators.append(discriminator._rest_name) + if isinstance(data, ET.Element): + model_meta = getattr(cls, "_xml", {}) + prop_meta = getattr(discriminator, "_xml", {}) + xml_name = prop_meta.get("name", discriminator._rest_name) + xml_ns = prop_meta.get("ns", model_meta.get("ns", None)) + if xml_ns: + xml_name = "{" + xml_ns + "}" + xml_name + + if data.get(xml_name) is not None: + discriminator_value = data.get(xml_name) + else: + discriminator_value = data.find(xml_name).text # pyright: ignore + else: + discriminator_value = data.get(discriminator._rest_name) + mapped_cls = cls.__mapping__.get(discriminator_value, cls) # pyright: ignore # pylint: disable=no-member + return mapped_cls._deserialize(data, exist_discriminators) def as_dict(self, *, exclude_readonly: bool = False) -> typing.Dict[str, typing.Any]: """Return a dict that can be JSONify using json.dump. @@ -624,6 +699,8 @@ def _deserialize_dict( ): if obj is None: return obj + if isinstance(obj, ET.Element): + obj = {child.tag: child for child in obj} return {k: _deserialize(value_deserializer, v, module) for k, v in obj.items()} @@ -644,6 +721,8 @@ def _deserialize_sequence( ): if obj is None: return obj + if isinstance(obj, ET.Element): + obj = list(obj) return type(obj)(_deserialize(deserializer, entry, module) for entry in obj) @@ -659,7 +738,7 @@ def _get_deserialize_callable_from_annotation( # pylint: disable=R0911, R0915, module: typing.Optional[str], rf: typing.Optional["_RestField"] = None, ) -> typing.Optional[typing.Callable[[typing.Any], typing.Any]]: - if not annotation or annotation in [int, float]: + if not annotation: return None # is it a type alias? @@ -734,7 +813,6 @@ def _get_deserialize_callable_from_annotation( # pylint: disable=R0911, R0915, try: if annotation._name in ["List", "Set", "Tuple", "Sequence"]: # pyright: ignore if len(annotation.__args__) > 1: # pyright: ignore - entry_deserializers = [ _get_deserialize_callable_from_annotation(dt, module, rf) for dt in annotation.__args__ # pyright: ignore @@ -769,12 +847,23 @@ def _deserialize_default( def _deserialize_with_callable( deserializer: typing.Optional[typing.Callable[[typing.Any], typing.Any]], value: typing.Any, -): +): # pylint: disable=too-many-return-statements try: if value is None or isinstance(value, _Null): return None + if isinstance(value, ET.Element): + if deserializer is str: + return value.text or "" + if deserializer is int: + return int(value.text) if value.text else None + if deserializer is float: + return float(value.text) if value.text else None + if deserializer is bool: + return value.text == "true" if value.text else None if deserializer is None: return value + if deserializer in [int, float, bool]: + return deserializer(value) if isinstance(deserializer, CaseInsensitiveEnumMeta): try: return deserializer(value) @@ -815,6 +904,7 @@ def __init__( default: typing.Any = _UNSET, format: typing.Optional[str] = None, is_multipart_file_input: bool = False, + xml: typing.Optional[typing.Dict[str, typing.Any]] = None, ): self._type = type self._rest_name_input = name @@ -825,6 +915,7 @@ def __init__( self._default = default self._format = format self._is_multipart_file_input = is_multipart_file_input + self._xml = xml if xml is not None else {} @property def _class_type(self) -> typing.Any: @@ -875,6 +966,7 @@ def rest_field( default: typing.Any = _UNSET, format: typing.Optional[str] = None, is_multipart_file_input: bool = False, + xml: typing.Optional[typing.Dict[str, typing.Any]] = None, ) -> typing.Any: return _RestField( name=name, @@ -883,6 +975,7 @@ def rest_field( default=default, format=format, is_multipart_file_input=is_multipart_file_input, + xml=xml, ) @@ -891,5 +984,175 @@ def rest_discriminator( name: typing.Optional[str] = None, type: typing.Optional[typing.Callable] = None, # pylint: disable=redefined-builtin visibility: typing.Optional[typing.List[str]] = None, + xml: typing.Optional[typing.Dict[str, typing.Any]] = None, +) -> typing.Any: + return _RestField(name=name, type=type, is_discriminator=True, visibility=visibility, xml=xml) + + +def serialize_xml(model: Model, exclude_readonly: bool = False) -> str: + """Serialize a model to XML. + + :param Model model: The model to serialize. + :param bool exclude_readonly: Whether to exclude readonly properties. + :returns: The XML representation of the model. + :rtype: str + """ + return ET.tostring(_get_element(model, exclude_readonly), encoding="unicode") # type: ignore + + +def _get_element( + o: typing.Any, + exclude_readonly: bool = False, + parent_meta: typing.Optional[typing.Dict[str, typing.Any]] = None, + wrapped_element: typing.Optional[ET.Element] = None, +) -> typing.Union[ET.Element, typing.List[ET.Element]]: + if _is_model(o): + model_meta = getattr(o, "_xml", {}) + + # if prop is a model, then use the prop element directly, else generate a wrapper of model + if wrapped_element is None: + wrapped_element = _create_xml_element( + model_meta.get("name", o.__class__.__name__), + model_meta.get("prefix"), + model_meta.get("ns"), + ) + + readonly_props = [] + if exclude_readonly: + readonly_props = [p._rest_name for p in o._attr_to_rest_field.values() if _is_readonly(p)] + + for k, v in o.items(): + # do not serialize readonly properties + if exclude_readonly and k in readonly_props: + continue + + prop_rest_field = _get_rest_field(o._attr_to_rest_field, k) + if prop_rest_field: + prop_meta = getattr(prop_rest_field, "_xml").copy() + # use the wire name as xml name if no specific name is set + if prop_meta.get("name") is None: + prop_meta["name"] = k + else: + # additional properties will not have rest field, use the wire name as xml name + prop_meta = {"name": k} + + # if no ns for prop, use model's + if prop_meta.get("ns") is None and model_meta.get("ns"): + prop_meta["ns"] = model_meta.get("ns") + prop_meta["prefix"] = model_meta.get("prefix") + + if prop_meta.get("unwrapped", False): + # unwrapped could only set on array + wrapped_element.extend(_get_element(v, exclude_readonly, prop_meta)) + elif prop_meta.get("text", False): + # text could only set on primitive type + wrapped_element.text = _get_primitive_type_value(v) + elif prop_meta.get("attribute", False): + xml_name = prop_meta.get("name", k) + if prop_meta.get("ns"): + ET.register_namespace(prop_meta.get("prefix"), prop_meta.get("ns")) # pyright: ignore + xml_name = "{" + prop_meta.get("ns") + "}" + xml_name # pyright: ignore + # attribute should be primitive type + wrapped_element.set(xml_name, _get_primitive_type_value(v)) + else: + # other wrapped prop element + wrapped_element.append(_get_wrapped_element(v, exclude_readonly, prop_meta)) + return wrapped_element + if isinstance(o, list): + return [_get_element(x, exclude_readonly, parent_meta) for x in o] # type: ignore + if isinstance(o, dict): + result = [] + for k, v in o.items(): + result.append( + _get_wrapped_element( + v, + exclude_readonly, + { + "name": k, + "ns": parent_meta.get("ns") if parent_meta else None, + "prefix": parent_meta.get("prefix") if parent_meta else None, + }, + ) + ) + return result + + # primitive case need to create element based on parent_meta + if parent_meta: + return _get_wrapped_element( + o, + exclude_readonly, + { + "name": parent_meta.get("itemsName", parent_meta.get("name")), + "prefix": parent_meta.get("itemsPrefix", parent_meta.get("prefix")), + "ns": parent_meta.get("itemsNs", parent_meta.get("ns")), + }, + ) + + raise ValueError("Could not serialize value into xml: " + o) + + +def _get_wrapped_element( + v: typing.Any, + exclude_readonly: bool, + meta: typing.Optional[typing.Dict[str, typing.Any]], +) -> ET.Element: + wrapped_element = _create_xml_element( + meta.get("name") if meta else None, meta.get("prefix") if meta else None, meta.get("ns") if meta else None + ) + if isinstance(v, (dict, list)): + wrapped_element.extend(_get_element(v, exclude_readonly, meta)) + elif _is_model(v): + _get_element(v, exclude_readonly, meta, wrapped_element) + else: + wrapped_element.text = _get_primitive_type_value(v) + return wrapped_element + + +def _get_primitive_type_value(v) -> str: + if v is True: + return "true" + if v is False: + return "false" + if isinstance(v, _Null): + return "" + return str(v) + + +def _create_xml_element(tag, prefix=None, ns=None): + if prefix and ns: + ET.register_namespace(prefix, ns) + if ns: + return ET.Element("{" + ns + "}" + tag) + return ET.Element(tag) + + +def _deserialize_xml( + deserializer: typing.Any, + value: str, ) -> typing.Any: - return _RestField(name=name, type=type, is_discriminator=True, visibility=visibility) + element = ET.fromstring(value) # nosec + return _deserialize(deserializer, element) + + +def _convert_element(e: ET.Element): + # dict case + if len(e.attrib) > 0 or len({child.tag for child in e}) > 1: + dict_result: typing.Dict[str, typing.Any] = {} + for child in e: + if dict_result.get(child.tag) is not None: + if isinstance(dict_result[child.tag], list): + dict_result[child.tag].append(_convert_element(child)) + else: + dict_result[child.tag] = [dict_result[child.tag], _convert_element(child)] + else: + dict_result[child.tag] = _convert_element(child) + dict_result.update(e.attrib) + return dict_result + # array case + if len(e) > 0: + array_result: typing.List[typing.Any] = [] + for child in e: + array_result.append(_convert_element(child)) + return array_result + # primitive case + return e.text diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_operations/__init__.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_operations/__init__.py index 36334aa2ea34..057c6c92037f 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_operations/__init__.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_operations/__init__.py @@ -6,15 +6,16 @@ # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -from ._patch import DocumentIntelligenceClientOperationsMixin -from ._patch import DocumentIntelligenceAdministrationClientOperationsMixin - +from ._operations import DocumentIntelligenceClientOperationsMixin +from ._operations import DocumentIntelligenceAdministrationClientOperationsMixin +from ._patch import __all__ as _patch_all +from ._patch import * # pylint: disable=unused-wildcard-import from ._patch import patch_sdk as _patch_sdk __all__ = [ "DocumentIntelligenceClientOperationsMixin", "DocumentIntelligenceAdministrationClientOperationsMixin", ] - +__all__.extend([p for p in _patch_all if p not in __all__]) _patch_sdk() diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_operations/_operations.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_operations/_operations.py index 78a22b25704a..b7ae88e02fba 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_operations/_operations.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_operations/_operations.py @@ -654,7 +654,7 @@ def _analyze_document_initial( output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, **kwargs: Any, ) -> Iterator[bytes]: - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -747,7 +747,7 @@ def begin_analyze_document( :type model_id: str :param analyze_request: Analyze request parameters. Default value is None. :type analyze_request: ~azure.ai.documentintelligence.models.AnalyzeDocumentRequest - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain @@ -799,7 +799,7 @@ def begin_analyze_document( :type model_id: str :param analyze_request: Analyze request parameters. Default value is None. :type analyze_request: JSON - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain @@ -851,7 +851,7 @@ def begin_analyze_document( :type model_id: str :param analyze_request: Analyze request parameters. Default value is None. :type analyze_request: IO[bytes] - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain @@ -904,7 +904,7 @@ def begin_analyze_document( AnalyzeDocumentRequest, JSON, IO[bytes] Default value is None. :type analyze_request: ~azure.ai.documentintelligence.models.AnalyzeDocumentRequest or JSON or IO[bytes] - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain @@ -1008,7 +1008,7 @@ def _analyze_batch_documents_initial( output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, **kwargs: Any, ) -> Iterator[bytes]: - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -1101,7 +1101,7 @@ def begin_analyze_batch_documents( :type model_id: str :param analyze_batch_request: Analyze batch request parameters. Default value is None. :type analyze_batch_request: ~azure.ai.documentintelligence.models.AnalyzeBatchDocumentsRequest - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain @@ -1153,7 +1153,7 @@ def begin_analyze_batch_documents( :type model_id: str :param analyze_batch_request: Analyze batch request parameters. Default value is None. :type analyze_batch_request: JSON - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain @@ -1205,7 +1205,7 @@ def begin_analyze_batch_documents( :type model_id: str :param analyze_batch_request: Analyze batch request parameters. Default value is None. :type analyze_batch_request: IO[bytes] - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain @@ -1258,7 +1258,7 @@ def begin_analyze_batch_documents( AnalyzeBatchDocumentsRequest, JSON, IO[bytes] Default value is None. :type analyze_batch_request: ~azure.ai.documentintelligence.models.AnalyzeBatchDocumentsRequest or JSON or IO[bytes] - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain @@ -1360,7 +1360,7 @@ def get_analyze_result_pdf(self, model_id: str, result_id: str, **kwargs: Any) - :rtype: Iterator[bytes] :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -1428,7 +1428,7 @@ def get_analyze_result_figure( :rtype: Iterator[bytes] :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -1491,7 +1491,7 @@ def _classify_document_initial( pages: Optional[str] = None, **kwargs: Any, ) -> Iterator[bytes]: - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -1579,7 +1579,7 @@ def begin_classify_document( :keyword split: Document splitting mode. Known values are: "auto", "none", and "perPage". Default value is None. :paramtype split: str or ~azure.ai.documentintelligence.models.SplitMode - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. @@ -1615,7 +1615,7 @@ def begin_classify_document( :keyword split: Document splitting mode. Known values are: "auto", "none", and "perPage". Default value is None. :paramtype split: str or ~azure.ai.documentintelligence.models.SplitMode - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. @@ -1651,7 +1651,7 @@ def begin_classify_document( :keyword split: Document splitting mode. Known values are: "auto", "none", and "perPage". Default value is None. :paramtype split: str or ~azure.ai.documentintelligence.models.SplitMode - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword content_type: Body Parameter content-type. Content type parameter for binary body. @@ -1688,7 +1688,7 @@ def begin_classify_document( :keyword split: Document splitting mode. Known values are: "auto", "none", and "perPage". Default value is None. :paramtype split: str or ~azure.ai.documentintelligence.models.SplitMode - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :return: An instance of LROPoller that returns AnalyzeResult. The AnalyzeResult is compatible @@ -1764,7 +1764,7 @@ class DocumentIntelligenceAdministrationClientOperationsMixin( # pylint: disabl def _build_document_model_initial( self, build_request: Union[_models.BuildDocumentModelRequest, JSON, IO[bytes]], **kwargs: Any ) -> Iterator[bytes]: - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -1953,7 +1953,7 @@ def get_long_running_output(pipeline_response): def _compose_model_initial( self, compose_request: Union[_models.ComposeDocumentModelRequest, JSON, IO[bytes]], **kwargs: Any ) -> Iterator[bytes]: - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2213,7 +2213,7 @@ def authorize_model_copy( :rtype: ~azure.ai.documentintelligence.models.CopyAuthorization :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2276,7 +2276,7 @@ def authorize_model_copy( def _copy_model_to_initial( self, model_id: str, copy_to_request: Union[_models.CopyAuthorization, JSON, IO[bytes]], **kwargs: Any ) -> Iterator[bytes]: - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2487,7 +2487,7 @@ def get_model(self, model_id: str, **kwargs: Any) -> _models.DocumentModelDetail :rtype: ~azure.ai.documentintelligence.models.DocumentModelDetails :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2557,7 +2557,7 @@ def list_models(self, **kwargs: Any) -> Iterable["_models.DocumentModelDetails"] cls: ClsType[List[_models.DocumentModelDetails]] = kwargs.pop("cls", None) - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2637,7 +2637,7 @@ def delete_model(self, model_id: str, **kwargs: Any) -> None: # pylint: disable :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2689,7 +2689,7 @@ def get_resource_info(self, **kwargs: Any) -> _models.ResourceDetails: :rtype: ~azure.ai.documentintelligence.models.ResourceDetails :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2749,7 +2749,7 @@ def get_operation(self, operation_id: str, **kwargs: Any) -> _models.OperationDe :rtype: ~azure.ai.documentintelligence.models.OperationDetails :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2818,7 +2818,7 @@ def list_operations(self, **kwargs: Any) -> Iterable["_models.OperationDetails"] cls: ClsType[List[_models.OperationDetails]] = kwargs.pop("cls", None) - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2891,7 +2891,7 @@ def get_next(next_link=None): def _build_classifier_initial( self, build_request: Union[_models.BuildDocumentClassifierRequest, JSON, IO[bytes]], **kwargs: Any ) -> Iterator[bytes]: - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -3156,7 +3156,7 @@ def authorize_classifier_copy( :rtype: ~azure.ai.documentintelligence.models.ClassifierCopyAuthorization :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -3222,7 +3222,7 @@ def _copy_classifier_to_initial( copy_to_request: Union[_models.ClassifierCopyAuthorization, JSON, IO[bytes]], **kwargs: Any, ) -> Iterator[bytes]: - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -3437,7 +3437,7 @@ def get_classifier(self, classifier_id: str, **kwargs: Any) -> _models.DocumentC :rtype: ~azure.ai.documentintelligence.models.DocumentClassifierDetails :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -3507,7 +3507,7 @@ def list_classifiers(self, **kwargs: Any) -> Iterable["_models.DocumentClassifie cls: ClsType[List[_models.DocumentClassifierDetails]] = kwargs.pop("cls", None) - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -3589,7 +3589,7 @@ def delete_classifier( # pylint: disable=inconsistent-return-statements :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_operations/_patch.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_operations/_patch.py index b0bc39b482c2..f7dd32510333 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_operations/_patch.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_operations/_patch.py @@ -6,624 +6,9 @@ Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize """ -import sys -import re -from typing import Any, Callable, Dict, IO, List, Optional, TypeVar, Union, Mapping, cast, overload +from typing import List -from azure.core.pipeline import PipelineResponse -from azure.core.polling import LROPoller, NoPolling, PollingMethod -from azure.core.polling.base_polling import LROBasePolling -from azure.core.rest import HttpRequest, HttpResponse -from azure.core.tracing.decorator import distributed_trace -from azure.core.utils import case_insensitive_dict - -from ._operations import ( - DocumentIntelligenceClientOperationsMixin as GeneratedDIClientOps, - DocumentIntelligenceAdministrationClientOperationsMixin as GeneratedDIAdminClientOps, -) -from .. import models as _models -from .._model_base import _deserialize - -if sys.version_info >= (3, 9): - from collections.abc import MutableMapping -else: - from typing import MutableMapping # type: ignore # pylint: disable=ungrouped-imports -JSON = MutableMapping[str, Any] # pylint: disable=unsubscriptable-object -T = TypeVar("T") -ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] -PollingReturnType_co = TypeVar("PollingReturnType_co", covariant=True) -_FINISHED = frozenset(["succeeded", "canceled", "failed", "completed"]) - - -def _parse_operation_id(operation_location_header): - regex = "[^:]+://[^/]+/documentintelligence/.+/([^?/]+)" - return re.match(regex, operation_location_header).group(1) - -def _finished(status) -> bool: - if hasattr(status, "value"): - status = status.value - return str(status).lower() in _FINISHED - - -class AnalyzeDocumentLROPoller(LROPoller[PollingReturnType_co]): - @property - def details(self) -> Mapping[str, Any]: - """Returns metadata associated with the long-running operation. - - :return: Returns metadata associated with the long-running operation. - :rtype: Mapping[str, Any] - """ - return { - "operation_id": _parse_operation_id( - self.polling_method()._initial_response.http_response.headers["Operation-Location"] # type: ignore # pylint: disable=protected-access - ), - } - - @classmethod - def from_continuation_token( - cls, polling_method: PollingMethod[PollingReturnType_co], continuation_token: str, **kwargs: Any - ) -> "AnalyzeDocumentLROPoller": - ( - client, - initial_response, - deserialization_callback, - ) = polling_method.from_continuation_token(continuation_token, **kwargs) - - return cls(client, initial_response, deserialization_callback, polling_method) - - -class AnalyzeBatchDocumentsLROPollingMethod(LROBasePolling): - def finished(self) -> bool: - """Is this polling finished? - - :return: Whether polling is finished or not. - :rtype: bool - """ - return _finished(self.status()) - - -class DocumentIntelligenceAdministrationClientOperationsMixin( - GeneratedDIAdminClientOps -): # pylint: disable=name-too-long - @distributed_trace - def begin_build_classifier( - self, build_request: Union[_models.BuildDocumentClassifierRequest, JSON, IO[bytes]], **kwargs: Any - ) -> LROPoller[_models.DocumentClassifierDetails]: - _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) - _params = kwargs.pop("params", {}) or {} - - content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) - cls: ClsType[_models.DocumentClassifierDetails] = kwargs.pop("cls", None) - polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) - lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) - cont_token: Optional[str] = kwargs.pop("continuation_token", None) - if cont_token is None: - raw_result = self._build_classifier_initial( # type: ignore - build_request=build_request, - content_type=content_type, - cls=lambda x, y, z: x, - headers=_headers, - params=_params, - **kwargs, - ) - kwargs.pop("error_map", None) - - def get_long_running_output(pipeline_response): - response_headers = {} - response = pipeline_response.http_response - response_headers["Operation-Location"] = self._deserialize( - "str", response.headers.get("Operation-Location") - ) - - deserialized = _deserialize(_models.DocumentClassifierDetails, response.json()) - if cls: - return cls(pipeline_response, deserialized, response_headers) # type: ignore - return deserialized - - path_format_arguments = { - "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), - } - - if polling is True: - polling_method: PollingMethod = cast( - PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) - ) - elif polling is False: - polling_method = cast(PollingMethod, NoPolling()) - else: - polling_method = polling - if cont_token: - return LROPoller[_models.DocumentClassifierDetails].from_continuation_token( - polling_method=polling_method, - continuation_token=cont_token, - client=self._client, - deserialization_callback=get_long_running_output, - ) - return LROPoller[_models.DocumentClassifierDetails]( - self._client, raw_result, get_long_running_output, polling_method # type: ignore - ) - - @distributed_trace - def begin_build_document_model( - self, build_request: Union[_models.BuildDocumentModelRequest, JSON, IO[bytes]], **kwargs: Any - ) -> LROPoller[_models.DocumentModelDetails]: - _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) - _params = kwargs.pop("params", {}) or {} - - content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) - cls: ClsType[_models.DocumentModelDetails] = kwargs.pop("cls", None) - polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) - lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) - cont_token: Optional[str] = kwargs.pop("continuation_token", None) - if cont_token is None: - raw_result = self._build_document_model_initial( # type: ignore - build_request=build_request, - content_type=content_type, - cls=lambda x, y, z: x, - headers=_headers, - params=_params, - **kwargs, - ) - kwargs.pop("error_map", None) - - def get_long_running_output(pipeline_response): - response_headers = {} - response = pipeline_response.http_response - response_headers["Operation-Location"] = self._deserialize( - "str", response.headers.get("Operation-Location") - ) - - deserialized = _deserialize(_models.DocumentModelDetails, response.json()) - if cls: - return cls(pipeline_response, deserialized, response_headers) # type: ignore - return deserialized - - path_format_arguments = { - "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), - } - - if polling is True: - polling_method: PollingMethod = cast( - PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) - ) - elif polling is False: - polling_method = cast(PollingMethod, NoPolling()) - else: - polling_method = polling - if cont_token: - return LROPoller[_models.DocumentModelDetails].from_continuation_token( - polling_method=polling_method, - continuation_token=cont_token, - client=self._client, - deserialization_callback=get_long_running_output, - ) - return LROPoller[_models.DocumentModelDetails]( - self._client, raw_result, get_long_running_output, polling_method # type: ignore - ) - - @distributed_trace - def begin_compose_model( - self, compose_request: Union[_models.ComposeDocumentModelRequest, JSON, IO[bytes]], **kwargs: Any - ) -> LROPoller[_models.DocumentModelDetails]: - _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) - _params = kwargs.pop("params", {}) or {} - - content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) - cls: ClsType[_models.DocumentModelDetails] = kwargs.pop("cls", None) - polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) - lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) - cont_token: Optional[str] = kwargs.pop("continuation_token", None) - if cont_token is None: - raw_result = self._compose_model_initial( # type: ignore - compose_request=compose_request, - content_type=content_type, - cls=lambda x, y, z: x, - headers=_headers, - params=_params, - **kwargs, - ) - kwargs.pop("error_map", None) - - def get_long_running_output(pipeline_response): - response_headers = {} - response = pipeline_response.http_response - response_headers["Operation-Location"] = self._deserialize( - "str", response.headers.get("Operation-Location") - ) - - deserialized = _deserialize(_models.DocumentModelDetails, response.json()) - if cls: - return cls(pipeline_response, deserialized, response_headers) # type: ignore - return deserialized - - path_format_arguments = { - "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), - } - - if polling is True: - polling_method: PollingMethod = cast( - PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) - ) - elif polling is False: - polling_method = cast(PollingMethod, NoPolling()) - else: - polling_method = polling - if cont_token: - return LROPoller[_models.DocumentModelDetails].from_continuation_token( - polling_method=polling_method, - continuation_token=cont_token, - client=self._client, - deserialization_callback=get_long_running_output, - ) - return LROPoller[_models.DocumentModelDetails]( - self._client, raw_result, get_long_running_output, polling_method # type: ignore - ) - - @distributed_trace - def begin_copy_model_to( - self, model_id: str, copy_to_request: Union[_models.CopyAuthorization, JSON, IO[bytes]], **kwargs: Any - ) -> LROPoller[_models.DocumentModelDetails]: - _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) - _params = kwargs.pop("params", {}) or {} - - content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) - cls: ClsType[_models.DocumentModelDetails] = kwargs.pop("cls", None) - polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) - lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) - cont_token: Optional[str] = kwargs.pop("continuation_token", None) - if cont_token is None: - raw_result = self._copy_model_to_initial( # type: ignore - model_id=model_id, - copy_to_request=copy_to_request, - content_type=content_type, - cls=lambda x, y, z: x, - headers=_headers, - params=_params, - **kwargs, - ) - kwargs.pop("error_map", None) - - def get_long_running_output(pipeline_response): - response_headers = {} - response = pipeline_response.http_response - response_headers["Operation-Location"] = self._deserialize( - "str", response.headers.get("Operation-Location") - ) - - deserialized = _deserialize(_models.DocumentModelDetails, response.json()) - if cls: - return cls(pipeline_response, deserialized, response_headers) # type: ignore - return deserialized - - path_format_arguments = { - "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), - } - - if polling is True: - polling_method: PollingMethod = cast( - PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) - ) - elif polling is False: - polling_method = cast(PollingMethod, NoPolling()) - else: - polling_method = polling - if cont_token: - return LROPoller[_models.DocumentModelDetails].from_continuation_token( - polling_method=polling_method, - continuation_token=cont_token, - client=self._client, - deserialization_callback=get_long_running_output, - ) - return LROPoller[_models.DocumentModelDetails]( - self._client, raw_result, get_long_running_output, polling_method # type: ignore - ) - - -class DocumentIntelligenceClientOperationsMixin(GeneratedDIClientOps): # pylint: disable=name-too-long - @overload - def begin_analyze_document( - self, - model_id: str, - analyze_request: Optional[_models.AnalyzeDocumentRequest] = None, - *, - pages: Optional[str] = None, - locale: Optional[str] = None, - string_index_type: Optional[Union[str, _models.StringIndexType]] = None, - features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, - query_fields: Optional[List[str]] = None, - output_content_format: Optional[Union[str, _models.ContentFormat]] = None, - output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, - content_type: str = "application/json", - **kwargs: Any, - ) -> AnalyzeDocumentLROPoller[_models.AnalyzeResult]: - """Analyzes document with document model. - - :param model_id: Unique document model name. Required. - :type model_id: str - :param analyze_request: Analyze request parameters. Default value is None. - :type analyze_request: ~azure.ai.documentintelligence.models.AnalyzeDocumentRequest - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is - None. - :paramtype pages: str - :keyword locale: Locale hint for text recognition and document analysis. Value may contain - only - the language code (ex. "en", "fr") or BCP 47 language tag (ex. "en-US"). Default value is - None. - :paramtype locale: str - :keyword string_index_type: Method used to compute string offset and length. Known values are: - "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. - :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType - :keyword features: List of optional analysis features. Default value is None. - :paramtype features: list[str or ~azure.ai.documentintelligence.models.DocumentAnalysisFeature] - :keyword query_fields: List of additional fields to extract. Ex. "NumberOfGuests,StoreNumber". - Default value is None. - :paramtype query_fields: list[str] - :keyword output_content_format: Format of the analyze result top-level content. Known values - are: "text" and "markdown". Default value is None. - :paramtype output_content_format: str or ~azure.ai.documentintelligence.models.ContentFormat - :keyword output: Additional outputs to generate during analysis. Default value is None. - :paramtype output: list[str or ~azure.ai.documentintelligence.models.AnalyzeOutputOption] - :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. - Default value is "application/json". - :paramtype content_type: str - :return: An instance of AnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is compatible - with MutableMapping - :rtype: AnalyzeDocumentLROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] - :raises ~azure.core.exceptions.HttpResponseError: - """ - - @overload - def begin_analyze_document( - self, - model_id: str, - analyze_request: Optional[JSON] = None, - *, - pages: Optional[str] = None, - locale: Optional[str] = None, - string_index_type: Optional[Union[str, _models.StringIndexType]] = None, - features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, - query_fields: Optional[List[str]] = None, - output_content_format: Optional[Union[str, _models.ContentFormat]] = None, - output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, - content_type: str = "application/json", - **kwargs: Any, - ) -> AnalyzeDocumentLROPoller[_models.AnalyzeResult]: - """Analyzes document with document model. - - :param model_id: Unique document model name. Required. - :type model_id: str - :param analyze_request: Analyze request parameters. Default value is None. - :type analyze_request: JSON - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is - None. - :paramtype pages: str - :keyword locale: Locale hint for text recognition and document analysis. Value may contain - only - the language code (ex. "en", "fr") or BCP 47 language tag (ex. "en-US"). Default value is - None. - :paramtype locale: str - :keyword string_index_type: Method used to compute string offset and length. Known values are: - "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. - :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType - :keyword features: List of optional analysis features. Default value is None. - :paramtype features: list[str or ~azure.ai.documentintelligence.models.DocumentAnalysisFeature] - :keyword query_fields: List of additional fields to extract. Ex. "NumberOfGuests,StoreNumber". - Default value is None. - :paramtype query_fields: list[str] - :keyword output_content_format: Format of the analyze result top-level content. Known values - are: "text" and "markdown". Default value is None. - :paramtype output_content_format: str or ~azure.ai.documentintelligence.models.ContentFormat - :keyword output: Additional outputs to generate during analysis. Default value is None. - :paramtype output: list[str or ~azure.ai.documentintelligence.models.AnalyzeOutputOption] - :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. - Default value is "application/json". - :paramtype content_type: str - :return: An instance of AnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is compatible - with MutableMapping - :rtype: AnalyzeDocumentLROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] - :raises ~azure.core.exceptions.HttpResponseError: - """ - - @overload - def begin_analyze_document( - self, - model_id: str, - analyze_request: Optional[IO[bytes]] = None, - *, - pages: Optional[str] = None, - locale: Optional[str] = None, - string_index_type: Optional[Union[str, _models.StringIndexType]] = None, - features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, - query_fields: Optional[List[str]] = None, - output_content_format: Optional[Union[str, _models.ContentFormat]] = None, - output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, - content_type: str = "application/json", - **kwargs: Any, - ) -> AnalyzeDocumentLROPoller[_models.AnalyzeResult]: - """Analyzes document with document model. - - :param model_id: Unique document model name. Required. - :type model_id: str - :param analyze_request: Analyze request parameters. Default value is None. - :type analyze_request: IO[bytes] - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is - None. - :paramtype pages: str - :keyword locale: Locale hint for text recognition and document analysis. Value may contain - only - the language code (ex. "en", "fr") or BCP 47 language tag (ex. "en-US"). Default value is - None. - :paramtype locale: str - :keyword string_index_type: Method used to compute string offset and length. Known values are: - "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. - :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType - :keyword features: List of optional analysis features. Default value is None. - :paramtype features: list[str or ~azure.ai.documentintelligence.models.DocumentAnalysisFeature] - :keyword query_fields: List of additional fields to extract. Ex. "NumberOfGuests,StoreNumber". - Default value is None. - :paramtype query_fields: list[str] - :keyword output_content_format: Format of the analyze result top-level content. Known values - are: "text" and "markdown". Default value is None. - :paramtype output_content_format: str or ~azure.ai.documentintelligence.models.ContentFormat - :keyword output: Additional outputs to generate during analysis. Default value is None. - :paramtype output: list[str or ~azure.ai.documentintelligence.models.AnalyzeOutputOption] - :keyword content_type: Body Parameter content-type. Content type parameter for binary body. - Default value is "application/json". - :paramtype content_type: str - :return: An instance of AnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is compatible - with MutableMapping - :rtype: AnalyzeDocumentLROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] - :raises ~azure.core.exceptions.HttpResponseError: - """ - - @distributed_trace - def begin_analyze_document( - self, - model_id: str, - analyze_request: Optional[Union[_models.AnalyzeDocumentRequest, JSON, IO[bytes]]] = None, - *, - pages: Optional[str] = None, - locale: Optional[str] = None, - string_index_type: Optional[Union[str, _models.StringIndexType]] = None, - features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, - query_fields: Optional[List[str]] = None, - output_content_format: Optional[Union[str, _models.ContentFormat]] = None, - output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, - **kwargs: Any, - ) -> AnalyzeDocumentLROPoller[_models.AnalyzeResult]: - """Analyzes document with document model. - - :param model_id: Unique document model name. Required. - :type model_id: str - :param analyze_request: Analyze request parameters. Is one of the following types: - AnalyzeDocumentRequest, JSON, IO[bytes] Default value is None. - :type analyze_request: ~azure.ai.documentintelligence.models.AnalyzeDocumentRequest or JSON or - IO[bytes] - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is - None. - :paramtype pages: str - :keyword locale: Locale hint for text recognition and document analysis. Value may contain - only - the language code (ex. "en", "fr") or BCP 47 language tag (ex. "en-US"). Default value is - None. - :paramtype locale: str - :keyword string_index_type: Method used to compute string offset and length. Known values are: - "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. - :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType - :keyword features: List of optional analysis features. Default value is None. - :paramtype features: list[str or ~azure.ai.documentintelligence.models.DocumentAnalysisFeature] - :keyword query_fields: List of additional fields to extract. Ex. "NumberOfGuests,StoreNumber". - Default value is None. - :paramtype query_fields: list[str] - :keyword output_content_format: Format of the analyze result top-level content. Known values - are: "text" and "markdown". Default value is None. - :paramtype output_content_format: str or ~azure.ai.documentintelligence.models.ContentFormat - :keyword output: Additional outputs to generate during analysis. Default value is None. - :paramtype output: list[str or ~azure.ai.documentintelligence.models.AnalyzeOutputOption] - :return: An instance of AnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is compatible - with MutableMapping - :rtype: AnalyzeDocumentLROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] - :raises ~azure.core.exceptions.HttpResponseError: - """ - _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) - _params = kwargs.pop("params", {}) or {} - - content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("content-type", None)) - cls: ClsType[_models.AnalyzeResult] = kwargs.pop("cls", None) - polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) - lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) - cont_token: Optional[str] = kwargs.pop("continuation_token", None) - if cont_token is None: - raw_result = self._analyze_document_initial( - model_id=model_id, - analyze_request=analyze_request, - pages=pages, - locale=locale, - string_index_type=string_index_type, - features=features, - query_fields=query_fields, - output_content_format=output_content_format, - output=output, - content_type=content_type, - cls=lambda x, y, z: x, - headers=_headers, - params=_params, - **kwargs, - ) - raw_result.http_response.read() # type: ignore - kwargs.pop("error_map", None) - - def get_long_running_output(pipeline_response): - response_headers = {} - response = pipeline_response.http_response - response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) - response_headers["Operation-Location"] = self._deserialize( - "str", response.headers.get("Operation-Location") - ) - - deserialized = _deserialize(_models.AnalyzeResult, response.json().get("analyzeResult")) - if cls: - return cls(pipeline_response, deserialized, response_headers) # type: ignore - return deserialized - - path_format_arguments = { - "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), - } - - if polling is True: - polling_method: PollingMethod = cast( - PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) - ) - elif polling is False: - polling_method = cast(PollingMethod, NoPolling()) - else: - polling_method = polling - if cont_token: - return AnalyzeDocumentLROPoller[_models.AnalyzeResult].from_continuation_token( - polling_method=polling_method, - continuation_token=cont_token, - client=self._client, - deserialization_callback=get_long_running_output, - ) - return AnalyzeDocumentLROPoller[_models.AnalyzeResult]( - self._client, raw_result, get_long_running_output, polling_method # type: ignore - ) - - @distributed_trace - def begin_analyze_batch_documents( - self, - model_id: str, - analyze_batch_request: Optional[Union[_models.AnalyzeBatchDocumentsRequest, JSON, IO[bytes]]] = None, - *, - pages: Optional[str] = None, - locale: Optional[str] = None, - string_index_type: Optional[Union[str, _models.StringIndexType]] = None, - features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, - query_fields: Optional[List[str]] = None, - output_content_format: Optional[Union[str, _models.ContentFormat]] = None, - output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, - **kwargs: Any, - ) -> LROPoller[_models.AnalyzeBatchResult]: - lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) - return super().begin_analyze_batch_documents( - model_id=model_id, - analyze_batch_request=analyze_batch_request, - pages=pages, - locale=locale, - string_index_type=string_index_type, - features=features, - query_fields=query_fields, - output_content_format=output_content_format, - output=output, - polling=AnalyzeBatchDocumentsLROPollingMethod(timeout=lro_delay), - **kwargs, - ) - - -__all__: List[str] = [ - "DocumentIntelligenceClientOperationsMixin", - "DocumentIntelligenceAdministrationClientOperationsMixin", -] # Add all objects you want publicly available to users at this package level +__all__: List[str] = [] # Add all objects you want publicly available to users at this package level def patch_sdk(): diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_patch.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_patch.py index 2b05dac1b519..f7dd32510333 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_patch.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_patch.py @@ -6,88 +6,9 @@ Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize """ -from typing import Any, List, Union -from azure.core.credentials import AzureKeyCredential, TokenCredential -from ._client import ( - DocumentIntelligenceClient as DIClientGenerated, - DocumentIntelligenceAdministrationClient as DIAClientGenerated, -) -from ._operations._patch import AnalyzeDocumentLROPoller +from typing import List - -class DocumentIntelligenceClient(DIClientGenerated): # pylint: disable=client-accepts-api-version-keyword - """DocumentIntelligenceClient. - - :param endpoint: The Document Intelligence service endpoint. Required. - :type endpoint: str - :param credential: Credential needed for the client to connect to Azure. Is either a - AzureKeyCredential type or a TokenCredential type. Required. - :type credential: ~azure.core.credentials.AzureKeyCredential or - ~azure.core.credentials.TokenCredential - :keyword api_version: The API version to use for this operation. Default value is - "2024-07-31-preview". Note that overriding this default value may result in unsupported - behavior. - :paramtype api_version: str - :keyword int polling_interval: Default waiting time between two polls for LRO operations if no - Retry-After header is present. - """ - - def __init__( - self, - endpoint: str, - credential: Union[AzureKeyCredential, TokenCredential], - **kwargs: Any, - ) -> None: - # Patch the default polling interval to be 1s. - polling_interval = kwargs.pop("polling_interval", 1) - super().__init__( - endpoint=endpoint, - credential=credential, - polling_interval=polling_interval, - **kwargs, - ) - - -class DocumentIntelligenceAdministrationClient( - DIAClientGenerated -): # pylint: disable=client-accepts-api-version-keyword - """DocumentIntelligenceAdministrationClient. - - :param endpoint: The Document Intelligence service endpoint. Required. - :type endpoint: str - :param credential: Credential needed for the client to connect to Azure. Is either a - AzureKeyCredential type or a TokenCredential type. Required. - :type credential: ~azure.core.credentials.AzureKeyCredential or - ~azure.core.credentials.TokenCredential - :keyword api_version: The API version to use for this operation. Default value is - "2024-07-31-preview". Note that overriding this default value may result in unsupported - behavior. - :paramtype api_version: str - :keyword int polling_interval: Default waiting time between two polls for LRO operations if no - Retry-After header is present. - """ - - def __init__( - self, - endpoint: str, - credential: Union[AzureKeyCredential, TokenCredential], - **kwargs: Any, - ) -> None: - # Patch the default polling interval to be 1s. - polling_interval = kwargs.pop("polling_interval", 1) - super().__init__( - endpoint=endpoint, - credential=credential, - polling_interval=polling_interval, - **kwargs, - ) - - -__all__: List[str] = [ - "DocumentIntelligenceClient", - "DocumentIntelligenceAdministrationClient", - "AnalyzeDocumentLROPoller", -] # Add all objects you want publicly available to users at this package level +__all__: List[str] = [] # Add all objects you want publicly available to users at this package level def patch_sdk(): diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_serialization.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_serialization.py index 8139854b97bb..01a226bd7f14 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_serialization.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_serialization.py @@ -1,3 +1,4 @@ +# pylint: disable=too-many-lines # -------------------------------------------------------------------------- # # Copyright (c) Microsoft Corporation. All rights reserved. @@ -24,7 +25,6 @@ # # -------------------------------------------------------------------------- -# pylint: skip-file # pyright: reportUnnecessaryTypeIgnoreComment=false from base64 import b64decode, b64encode @@ -52,7 +52,6 @@ MutableMapping, Type, List, - Mapping, ) try: @@ -91,6 +90,8 @@ def deserialize_from_text(cls, data: Optional[Union[AnyStr, IO]], content_type: :param data: Input, could be bytes or stream (will be decoded with UTF8) or text :type data: str or bytes or IO :param str content_type: The content type. + :return: The deserialized data. + :rtype: object """ if hasattr(data, "read"): # Assume a stream @@ -112,7 +113,7 @@ def deserialize_from_text(cls, data: Optional[Union[AnyStr, IO]], content_type: try: return json.loads(data_as_str) except ValueError as err: - raise DeserializationError("JSON is invalid: {}".format(err), err) + raise DeserializationError("JSON is invalid: {}".format(err), err) from err elif "xml" in (content_type or []): try: @@ -155,6 +156,11 @@ def deserialize_from_http_generics(cls, body_bytes: Optional[Union[AnyStr, IO]], Use bytes and headers to NOT use any requests/aiohttp or whatever specific implementation. Headers will tested for "content-type" + + :param bytes body_bytes: The body of the response. + :param dict headers: The headers of the response. + :returns: The deserialized data. + :rtype: object """ # Try to use content-type from headers if available content_type = None @@ -184,15 +190,30 @@ class UTC(datetime.tzinfo): """Time Zone info for handling UTC""" def utcoffset(self, dt): - """UTF offset for UTC is 0.""" + """UTF offset for UTC is 0. + + :param datetime.datetime dt: The datetime + :returns: The offset + :rtype: datetime.timedelta + """ return datetime.timedelta(0) def tzname(self, dt): - """Timestamp representation.""" + """Timestamp representation. + + :param datetime.datetime dt: The datetime + :returns: The timestamp representation + :rtype: str + """ return "Z" def dst(self, dt): - """No daylight saving for UTC.""" + """No daylight saving for UTC. + + :param datetime.datetime dt: The datetime + :returns: The daylight saving time + :rtype: datetime.timedelta + """ return datetime.timedelta(hours=1) @@ -235,24 +256,26 @@ def __getinitargs__(self): _FLATTEN = re.compile(r"(? None: self.additional_properties: Optional[Dict[str, Any]] = {} - for k in kwargs: + for k in kwargs: # pylint: disable=consider-using-dict-items if k not in self._attribute_map: _LOGGER.warning("%s is not a known attribute of class %s and will be ignored", k, self.__class__) elif k in self._validation and self._validation[k].get("readonly", False): @@ -300,13 +330,23 @@ def __init__(self, **kwargs: Any) -> None: setattr(self, k, kwargs[k]) def __eq__(self, other: Any) -> bool: - """Compare objects by comparing all attributes.""" + """Compare objects by comparing all attributes. + + :param object other: The object to compare + :returns: True if objects are equal + :rtype: bool + """ if isinstance(other, self.__class__): return self.__dict__ == other.__dict__ return False def __ne__(self, other: Any) -> bool: - """Compare objects by comparing all attributes.""" + """Compare objects by comparing all attributes. + + :param object other: The object to compare + :returns: True if objects are not equal + :rtype: bool + """ return not self.__eq__(other) def __str__(self) -> str: @@ -326,7 +366,11 @@ def is_xml_model(cls) -> bool: @classmethod def _create_xml_node(cls): - """Create XML node.""" + """Create XML node. + + :returns: The XML node + :rtype: xml.etree.ElementTree.Element + """ try: xml_map = cls._xml_map # type: ignore except AttributeError: @@ -346,7 +390,9 @@ def serialize(self, keep_readonly: bool = False, **kwargs: Any) -> JSON: :rtype: dict """ serializer = Serializer(self._infer_class_models()) - return serializer._serialize(self, keep_readonly=keep_readonly, **kwargs) # type: ignore + return serializer._serialize( # type: ignore # pylint: disable=protected-access + self, keep_readonly=keep_readonly, **kwargs + ) def as_dict( self, @@ -380,12 +426,15 @@ def my_key_transformer(key, attr_desc, value): If you want XML serialization, you can pass the kwargs is_xml=True. + :param bool keep_readonly: If you want to serialize the readonly attributes :param function key_transformer: A key transformer function. :returns: A dict JSON compatible object :rtype: dict """ serializer = Serializer(self._infer_class_models()) - return serializer._serialize(self, key_transformer=key_transformer, keep_readonly=keep_readonly, **kwargs) # type: ignore + return serializer._serialize( # type: ignore # pylint: disable=protected-access + self, key_transformer=key_transformer, keep_readonly=keep_readonly, **kwargs + ) @classmethod def _infer_class_models(cls): @@ -395,7 +444,7 @@ def _infer_class_models(cls): client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} if cls.__name__ not in client_models: raise ValueError("Not Autorest generated code") - except Exception: + except Exception: # pylint: disable=broad-exception-caught # Assume it's not Autorest generated (tests?). Add ourselves as dependencies. client_models = {cls.__name__: cls} return client_models @@ -408,6 +457,7 @@ def deserialize(cls: Type[ModelType], data: Any, content_type: Optional[str] = N :param str content_type: JSON by default, set application/xml if XML. :returns: An instance of this model :raises: DeserializationError if something went wrong + :rtype: ModelType """ deserializer = Deserializer(cls._infer_class_models()) return deserializer(cls.__name__, data, content_type=content_type) # type: ignore @@ -426,9 +476,11 @@ def from_dict( and last_rest_key_case_insensitive_extractor) :param dict data: A dict using RestAPI structure + :param function key_extractors: A key extractor function. :param str content_type: JSON by default, set application/xml if XML. :returns: An instance of this model :raises: DeserializationError if something went wrong + :rtype: ModelType """ deserializer = Deserializer(cls._infer_class_models()) deserializer.key_extractors = ( # type: ignore @@ -448,7 +500,7 @@ def _flatten_subtype(cls, key, objects): return {} result = dict(cls._subtype_map[key]) for valuetype in cls._subtype_map[key].values(): - result.update(objects[valuetype]._flatten_subtype(key, objects)) + result.update(objects[valuetype]._flatten_subtype(key, objects)) # pylint: disable=protected-access return result @classmethod @@ -456,6 +508,11 @@ def _classify(cls, response, objects): """Check the class _subtype_map for any child classes. We want to ignore any inherited _subtype_maps. Remove the polymorphic key from the initial data. + + :param dict response: The initial data + :param dict objects: The class objects + :returns: The class to be used + :rtype: class """ for subtype_key in cls.__dict__.get("_subtype_map", {}).keys(): subtype_value = None @@ -501,11 +558,13 @@ def _decode_attribute_map_key(key): inside the received data. :param str key: A key string from the generated code + :returns: The decoded key + :rtype: str """ return key.replace("\\.", ".") -class Serializer(object): +class Serializer(object): # pylint: disable=too-many-public-methods """Request object model serializer.""" basic_types = {str: "str", int: "int", bool: "bool", float: "float"} @@ -560,13 +619,16 @@ def __init__(self, classes: Optional[Mapping[str, type]] = None): self.key_transformer = full_restapi_key_transformer self.client_side_validation = True - def _serialize(self, target_obj, data_type=None, **kwargs): + def _serialize( # pylint: disable=too-many-nested-blocks, too-many-branches, too-many-statements, too-many-locals + self, target_obj, data_type=None, **kwargs + ): """Serialize data into a string according to type. - :param target_obj: The data to be serialized. + :param object target_obj: The data to be serialized. :param str data_type: The type to be serialized from. :rtype: str, dict :raises: SerializationError if serialization fails. + :returns: The serialized data. """ key_transformer = kwargs.get("key_transformer", self.key_transformer) keep_readonly = kwargs.get("keep_readonly", False) @@ -592,12 +654,14 @@ def _serialize(self, target_obj, data_type=None, **kwargs): serialized = {} if is_xml_model_serialization: - serialized = target_obj._create_xml_node() + serialized = target_obj._create_xml_node() # pylint: disable=protected-access try: - attributes = target_obj._attribute_map + attributes = target_obj._attribute_map # pylint: disable=protected-access for attr, attr_desc in attributes.items(): attr_name = attr - if not keep_readonly and target_obj._validation.get(attr_name, {}).get("readonly", False): + if not keep_readonly and target_obj._validation.get( # pylint: disable=protected-access + attr_name, {} + ).get("readonly", False): continue if attr_name == "additional_properties" and attr_desc["key"] == "": @@ -633,7 +697,8 @@ def _serialize(self, target_obj, data_type=None, **kwargs): if isinstance(new_attr, list): serialized.extend(new_attr) # type: ignore elif isinstance(new_attr, ET.Element): - # If the down XML has no XML/Name, we MUST replace the tag with the local tag. But keeping the namespaces. + # If the down XML has no XML/Name, + # we MUST replace the tag with the local tag. But keeping the namespaces. if "name" not in getattr(orig_attr, "_xml_map", {}): splitted_tag = new_attr.tag.split("}") if len(splitted_tag) == 2: # Namespace @@ -664,17 +729,17 @@ def _serialize(self, target_obj, data_type=None, **kwargs): except (AttributeError, KeyError, TypeError) as err: msg = "Attribute {} in object {} cannot be serialized.\n{}".format(attr_name, class_name, str(target_obj)) raise SerializationError(msg) from err - else: - return serialized + return serialized def body(self, data, data_type, **kwargs): """Serialize data intended for a request body. - :param data: The data to be serialized. + :param object data: The data to be serialized. :param str data_type: The type to be serialized from. :rtype: dict :raises: SerializationError if serialization fails. :raises: ValueError if data is None + :returns: The serialized request body """ # Just in case this is a dict @@ -703,7 +768,7 @@ def body(self, data, data_type, **kwargs): attribute_key_case_insensitive_extractor, last_rest_key_case_insensitive_extractor, ] - data = deserializer._deserialize(data_type, data) + data = deserializer._deserialize(data_type, data) # pylint: disable=protected-access except DeserializationError as err: raise SerializationError("Unable to build a model: " + str(err)) from err @@ -712,9 +777,11 @@ def body(self, data, data_type, **kwargs): def url(self, name, data, data_type, **kwargs): """Serialize data intended for a URL path. - :param data: The data to be serialized. + :param str name: The name of the URL path parameter. + :param object data: The data to be serialized. :param str data_type: The type to be serialized from. :rtype: str + :returns: The serialized URL path :raises: TypeError if serialization fails. :raises: ValueError if data is None """ @@ -728,21 +795,20 @@ def url(self, name, data, data_type, **kwargs): output = output.replace("{", quote("{")).replace("}", quote("}")) else: output = quote(str(output), safe="") - except SerializationError: - raise TypeError("{} must be type {}.".format(name, data_type)) - else: - return output + except SerializationError as exc: + raise TypeError("{} must be type {}.".format(name, data_type)) from exc + return output def query(self, name, data, data_type, **kwargs): """Serialize data intended for a URL query. - :param data: The data to be serialized. + :param str name: The name of the query parameter. + :param object data: The data to be serialized. :param str data_type: The type to be serialized from. - :keyword bool skip_quote: Whether to skip quote the serialized result. - Defaults to False. :rtype: str, list :raises: TypeError if serialization fails. :raises: ValueError if data is None + :returns: The serialized query parameter """ try: # Treat the list aside, since we don't want to encode the div separator @@ -759,19 +825,20 @@ def query(self, name, data, data_type, **kwargs): output = str(output) else: output = quote(str(output), safe="") - except SerializationError: - raise TypeError("{} must be type {}.".format(name, data_type)) - else: - return str(output) + except SerializationError as exc: + raise TypeError("{} must be type {}.".format(name, data_type)) from exc + return str(output) def header(self, name, data, data_type, **kwargs): """Serialize data intended for a request header. - :param data: The data to be serialized. + :param str name: The name of the header. + :param object data: The data to be serialized. :param str data_type: The type to be serialized from. :rtype: str :raises: TypeError if serialization fails. :raises: ValueError if data is None + :returns: The serialized header """ try: if data_type in ["[str]"]: @@ -780,21 +847,20 @@ def header(self, name, data, data_type, **kwargs): output = self.serialize_data(data, data_type, **kwargs) if data_type == "bool": output = json.dumps(output) - except SerializationError: - raise TypeError("{} must be type {}.".format(name, data_type)) - else: - return str(output) + except SerializationError as exc: + raise TypeError("{} must be type {}.".format(name, data_type)) from exc + return str(output) def serialize_data(self, data, data_type, **kwargs): """Serialize generic data according to supplied data type. - :param data: The data to be serialized. + :param object data: The data to be serialized. :param str data_type: The type to be serialized from. - :param bool required: Whether it's essential that the data not be - empty or None :raises: AttributeError if required data is None. :raises: ValueError if data is None :raises: SerializationError if serialization fails. + :returns: The serialized data. + :rtype: str, int, float, bool, dict, list """ if data is None: raise ValueError("No value for given attribute") @@ -805,7 +871,7 @@ def serialize_data(self, data, data_type, **kwargs): if data_type in self.basic_types.values(): return self.serialize_basic(data, data_type, **kwargs) - elif data_type in self.serialize_type: + if data_type in self.serialize_type: return self.serialize_type[data_type](data, **kwargs) # If dependencies is empty, try with current data class @@ -821,11 +887,10 @@ def serialize_data(self, data, data_type, **kwargs): except (ValueError, TypeError) as err: msg = "Unable to serialize value: {!r} as type: {!r}." raise SerializationError(msg.format(data, data_type)) from err - else: - return self._serialize(data, **kwargs) + return self._serialize(data, **kwargs) @classmethod - def _get_custom_serializers(cls, data_type, **kwargs): + def _get_custom_serializers(cls, data_type, **kwargs): # pylint: disable=inconsistent-return-statements custom_serializer = kwargs.get("basic_types_serializers", {}).get(data_type) if custom_serializer: return custom_serializer @@ -841,23 +906,26 @@ def serialize_basic(cls, data, data_type, **kwargs): - basic_types_serializers dict[str, callable] : If set, use the callable as serializer - is_xml bool : If set, use xml_basic_types_serializers - :param data: Object to be serialized. + :param obj data: Object to be serialized. :param str data_type: Type of object in the iterable. + :rtype: str, int, float, bool + :return: serialized object """ custom_serializer = cls._get_custom_serializers(data_type, **kwargs) if custom_serializer: return custom_serializer(data) if data_type == "str": return cls.serialize_unicode(data) - return eval(data_type)(data) # nosec + return eval(data_type)(data) # nosec # pylint: disable=eval-used @classmethod def serialize_unicode(cls, data): """Special handling for serializing unicode strings in Py2. Encode to UTF-8 if unicode, otherwise handle as a str. - :param data: Object to be serialized. + :param str data: Object to be serialized. :rtype: str + :return: serialized object """ try: # If I received an enum, return its value return data.value @@ -871,8 +939,7 @@ def serialize_unicode(cls, data): return data except NameError: return str(data) - else: - return str(data) + return str(data) def serialize_iter(self, data, iter_type, div=None, **kwargs): """Serialize iterable. @@ -882,15 +949,13 @@ def serialize_iter(self, data, iter_type, div=None, **kwargs): serialization_ctxt['type'] should be same as data_type. - is_xml bool : If set, serialize as XML - :param list attr: Object to be serialized. + :param list data: Object to be serialized. :param str iter_type: Type of object in the iterable. - :param bool required: Whether the objects in the iterable must - not be None or empty. :param str div: If set, this str will be used to combine the elements in the iterable into a combined string. Default is 'None'. - :keyword bool do_quote: Whether to quote the serialized result of each iterable element. Defaults to False. :rtype: list, str + :return: serialized iterable """ if isinstance(data, str): raise SerializationError("Refuse str type as a valid iter type.") @@ -945,9 +1010,8 @@ def serialize_dict(self, attr, dict_type, **kwargs): :param dict attr: Object to be serialized. :param str dict_type: Type of object in the dictionary. - :param bool required: Whether the objects in the dictionary must - not be None or empty. :rtype: dict + :return: serialized dictionary """ serialization_ctxt = kwargs.get("serialization_ctxt", {}) serialized = {} @@ -971,7 +1035,7 @@ def serialize_dict(self, attr, dict_type, **kwargs): return serialized - def serialize_object(self, attr, **kwargs): + def serialize_object(self, attr, **kwargs): # pylint: disable=too-many-return-statements """Serialize a generic object. This will be handled as a dictionary. If object passed in is not a basic type (str, int, float, dict, list) it will simply be @@ -979,6 +1043,7 @@ def serialize_object(self, attr, **kwargs): :param dict attr: Object to be serialized. :rtype: dict or str + :return: serialized object """ if attr is None: return None @@ -1003,7 +1068,7 @@ def serialize_object(self, attr, **kwargs): return self.serialize_decimal(attr) # If it's a model or I know this dependency, serialize as a Model - elif obj_type in self.dependencies.values() or isinstance(attr, Model): + if obj_type in self.dependencies.values() or isinstance(attr, Model): return self._serialize(attr) if obj_type == dict: @@ -1034,56 +1099,61 @@ def serialize_enum(attr, enum_obj=None): try: enum_obj(result) # type: ignore return result - except ValueError: + except ValueError as exc: for enum_value in enum_obj: # type: ignore if enum_value.value.lower() == str(attr).lower(): return enum_value.value error = "{!r} is not valid value for enum {!r}" - raise SerializationError(error.format(attr, enum_obj)) + raise SerializationError(error.format(attr, enum_obj)) from exc @staticmethod - def serialize_bytearray(attr, **kwargs): + def serialize_bytearray(attr, **kwargs): # pylint: disable=unused-argument """Serialize bytearray into base-64 string. - :param attr: Object to be serialized. + :param str attr: Object to be serialized. :rtype: str + :return: serialized base64 """ return b64encode(attr).decode() @staticmethod - def serialize_base64(attr, **kwargs): + def serialize_base64(attr, **kwargs): # pylint: disable=unused-argument """Serialize str into base-64 string. - :param attr: Object to be serialized. + :param str attr: Object to be serialized. :rtype: str + :return: serialized base64 """ encoded = b64encode(attr).decode("ascii") return encoded.strip("=").replace("+", "-").replace("/", "_") @staticmethod - def serialize_decimal(attr, **kwargs): + def serialize_decimal(attr, **kwargs): # pylint: disable=unused-argument """Serialize Decimal object to float. - :param attr: Object to be serialized. + :param decimal attr: Object to be serialized. :rtype: float + :return: serialized decimal """ return float(attr) @staticmethod - def serialize_long(attr, **kwargs): + def serialize_long(attr, **kwargs): # pylint: disable=unused-argument """Serialize long (Py2) or int (Py3). - :param attr: Object to be serialized. + :param int attr: Object to be serialized. :rtype: int/long + :return: serialized long """ return _long_type(attr) @staticmethod - def serialize_date(attr, **kwargs): + def serialize_date(attr, **kwargs): # pylint: disable=unused-argument """Serialize Date object into ISO-8601 formatted string. :param Date attr: Object to be serialized. :rtype: str + :return: serialized date """ if isinstance(attr, str): attr = isodate.parse_date(attr) @@ -1091,11 +1161,12 @@ def serialize_date(attr, **kwargs): return t @staticmethod - def serialize_time(attr, **kwargs): + def serialize_time(attr, **kwargs): # pylint: disable=unused-argument """Serialize Time object into ISO-8601 formatted string. :param datetime.time attr: Object to be serialized. :rtype: str + :return: serialized time """ if isinstance(attr, str): attr = isodate.parse_time(attr) @@ -1105,30 +1176,32 @@ def serialize_time(attr, **kwargs): return t @staticmethod - def serialize_duration(attr, **kwargs): + def serialize_duration(attr, **kwargs): # pylint: disable=unused-argument """Serialize TimeDelta object into ISO-8601 formatted string. :param TimeDelta attr: Object to be serialized. :rtype: str + :return: serialized duration """ if isinstance(attr, str): attr = isodate.parse_duration(attr) return isodate.duration_isoformat(attr) @staticmethod - def serialize_rfc(attr, **kwargs): + def serialize_rfc(attr, **kwargs): # pylint: disable=unused-argument """Serialize Datetime object into RFC-1123 formatted string. :param Datetime attr: Object to be serialized. :rtype: str :raises: TypeError if format invalid. + :return: serialized rfc """ try: if not attr.tzinfo: _LOGGER.warning("Datetime with no tzinfo will be considered UTC.") utc = attr.utctimetuple() - except AttributeError: - raise TypeError("RFC1123 object must be valid Datetime object.") + except AttributeError as exc: + raise TypeError("RFC1123 object must be valid Datetime object.") from exc return "{}, {:02} {} {:04} {:02}:{:02}:{:02} GMT".format( Serializer.days[utc.tm_wday], @@ -1141,12 +1214,13 @@ def serialize_rfc(attr, **kwargs): ) @staticmethod - def serialize_iso(attr, **kwargs): + def serialize_iso(attr, **kwargs): # pylint: disable=unused-argument """Serialize Datetime object into ISO-8601 formatted string. :param Datetime attr: Object to be serialized. :rtype: str :raises: SerializationError if format invalid. + :return: serialized iso """ if isinstance(attr, str): attr = isodate.parse_datetime(attr) @@ -1172,13 +1246,14 @@ def serialize_iso(attr, **kwargs): raise TypeError(msg) from err @staticmethod - def serialize_unix(attr, **kwargs): + def serialize_unix(attr, **kwargs): # pylint: disable=unused-argument """Serialize Datetime object into IntTime format. This is represented as seconds. :param Datetime attr: Object to be serialized. :rtype: int :raises: SerializationError if format invalid + :return: serialied unix """ if isinstance(attr, int): return attr @@ -1186,11 +1261,11 @@ def serialize_unix(attr, **kwargs): if not attr.tzinfo: _LOGGER.warning("Datetime with no tzinfo will be considered UTC.") return int(calendar.timegm(attr.utctimetuple())) - except AttributeError: - raise TypeError("Unix time object must be valid Datetime object.") + except AttributeError as exc: + raise TypeError("Unix time object must be valid Datetime object.") from exc -def rest_key_extractor(attr, attr_desc, data): +def rest_key_extractor(attr, attr_desc, data): # pylint: disable=unused-argument key = attr_desc["key"] working_data = data @@ -1211,7 +1286,9 @@ def rest_key_extractor(attr, attr_desc, data): return working_data.get(key) -def rest_key_case_insensitive_extractor(attr, attr_desc, data): +def rest_key_case_insensitive_extractor( # pylint: disable=unused-argument, inconsistent-return-statements + attr, attr_desc, data +): key = attr_desc["key"] working_data = data @@ -1232,17 +1309,29 @@ def rest_key_case_insensitive_extractor(attr, attr_desc, data): return attribute_key_case_insensitive_extractor(key, None, working_data) -def last_rest_key_extractor(attr, attr_desc, data): - """Extract the attribute in "data" based on the last part of the JSON path key.""" +def last_rest_key_extractor(attr, attr_desc, data): # pylint: disable=unused-argument + """Extract the attribute in "data" based on the last part of the JSON path key. + + :param str attr: The attribute to extract + :param dict attr_desc: The attribute description + :param dict data: The data to extract from + :rtype: object + :returns: The extracted attribute + """ key = attr_desc["key"] dict_keys = _FLATTEN.split(key) return attribute_key_extractor(dict_keys[-1], None, data) -def last_rest_key_case_insensitive_extractor(attr, attr_desc, data): +def last_rest_key_case_insensitive_extractor(attr, attr_desc, data): # pylint: disable=unused-argument """Extract the attribute in "data" based on the last part of the JSON path key. This is the case insensitive version of "last_rest_key_extractor" + :param str attr: The attribute to extract + :param dict attr_desc: The attribute description + :param dict data: The data to extract from + :rtype: object + :returns: The extracted attribute """ key = attr_desc["key"] dict_keys = _FLATTEN.split(key) @@ -1279,7 +1368,7 @@ def _extract_name_from_internal_type(internal_type): return xml_name -def xml_key_extractor(attr, attr_desc, data): +def xml_key_extractor(attr, attr_desc, data): # pylint: disable=unused-argument,too-many-return-statements if isinstance(data, dict): return None @@ -1331,22 +1420,21 @@ def xml_key_extractor(attr, attr_desc, data): if is_iter_type: if is_wrapped: return None # is_wrapped no node, we want None - else: - return [] # not wrapped, assume empty list + return [] # not wrapped, assume empty list return None # Assume it's not there, maybe an optional node. # If is_iter_type and not wrapped, return all found children if is_iter_type: if not is_wrapped: return children - else: # Iter and wrapped, should have found one node only (the wrap one) - if len(children) != 1: - raise DeserializationError( - "Tried to deserialize an array not wrapped, and found several nodes '{}'. Maybe you should declare this array as wrapped?".format( - xml_name - ) + # Iter and wrapped, should have found one node only (the wrap one) + if len(children) != 1: + raise DeserializationError( + "Tried to deserialize an array not wrapped, and found several nodes '{}'. Maybe you should declare this array as wrapped?".format( # pylint: disable=line-too-long + xml_name ) - return list(children[0]) # Might be empty list and that's ok. + ) + return list(children[0]) # Might be empty list and that's ok. # Here it's not a itertype, we should have found one element only or empty if len(children) > 1: @@ -1363,7 +1451,7 @@ class Deserializer(object): basic_types = {str: "str", int: "int", bool: "bool", float: "float"} - valid_date = re.compile(r"\d{4}[-]\d{2}[-]\d{2}T\d{2}:\d{2}:\d{2}" r"\.?\d*Z?[-+]?[\d{2}]?:?[\d{2}]?") + valid_date = re.compile(r"\d{4}[-]\d{2}[-]\d{2}T\d{2}:\d{2}:\d{2}\.?\d*Z?[-+]?[\d{2}]?:?[\d{2}]?") def __init__(self, classes: Optional[Mapping[str, type]] = None): self.deserialize_type = { @@ -1403,11 +1491,12 @@ def __call__(self, target_obj, response_data, content_type=None): :param str content_type: Swagger "produces" if available. :raises: DeserializationError if deserialization fails. :return: Deserialized object. + :rtype: object """ data = self._unpack_content(response_data, content_type) return self._deserialize(target_obj, data) - def _deserialize(self, target_obj, data): + def _deserialize(self, target_obj, data): # pylint: disable=inconsistent-return-statements """Call the deserializer on a model. Data needs to be already deserialized as JSON or XML ElementTree @@ -1416,12 +1505,13 @@ def _deserialize(self, target_obj, data): :param object data: Object to deserialize. :raises: DeserializationError if deserialization fails. :return: Deserialized object. + :rtype: object """ # This is already a model, go recursive just in case if hasattr(data, "_attribute_map"): constants = [name for name, config in getattr(data, "_validation", {}).items() if config.get("constant")] try: - for attr, mapconfig in data._attribute_map.items(): + for attr, mapconfig in data._attribute_map.items(): # pylint: disable=protected-access if attr in constants: continue value = getattr(data, attr) @@ -1440,13 +1530,13 @@ def _deserialize(self, target_obj, data): if isinstance(response, str): return self.deserialize_data(data, response) - elif isinstance(response, type) and issubclass(response, Enum): + if isinstance(response, type) and issubclass(response, Enum): return self.deserialize_enum(data, response) if data is None or data is CoreNull: return data try: - attributes = response._attribute_map # type: ignore + attributes = response._attribute_map # type: ignore # pylint: disable=protected-access d_attrs = {} for attr, attr_desc in attributes.items(): # Check empty string. If it's not empty, someone has a real "additionalProperties"... @@ -1476,9 +1566,8 @@ def _deserialize(self, target_obj, data): except (AttributeError, TypeError, KeyError) as err: msg = "Unable to deserialize to object: " + class_name # type: ignore raise DeserializationError(msg) from err - else: - additional_properties = self._build_additional_properties(attributes, data) - return self._instantiate_model(response, d_attrs, additional_properties) + additional_properties = self._build_additional_properties(attributes, data) + return self._instantiate_model(response, d_attrs, additional_properties) def _build_additional_properties(self, attribute_map, data): if not self.additional_properties_detection: @@ -1505,6 +1594,8 @@ def _classify_target(self, target, data): :param str target: The target object type to deserialize to. :param str/dict data: The response data to deserialize. + :return: The classified target object and its class name. + :rtype: tuple """ if target is None: return None, None @@ -1516,7 +1607,7 @@ def _classify_target(self, target, data): return target, target try: - target = target._classify(data, self.dependencies) # type: ignore + target = target._classify(data, self.dependencies) # type: ignore # pylint: disable=protected-access except AttributeError: pass # Target is not a Model, no classify return target, target.__class__.__name__ # type: ignore @@ -1531,10 +1622,12 @@ def failsafe_deserialize(self, target_obj, data, content_type=None): :param str target_obj: The target object type to deserialize to. :param str/dict data: The response data to deserialize. :param str content_type: Swagger "produces" if available. + :return: Deserialized object. + :rtype: object """ try: return self(target_obj, data, content_type=content_type) - except: + except: # pylint: disable=bare-except _LOGGER.debug( "Ran into a deserialization error. Ignoring since this is failsafe deserialization", exc_info=True ) @@ -1552,10 +1645,12 @@ def _unpack_content(raw_data, content_type=None): If raw_data is something else, bypass all logic and return it directly. - :param raw_data: Data to be processed. - :param content_type: How to parse if raw_data is a string/bytes. + :param obj raw_data: Data to be processed. + :param str content_type: How to parse if raw_data is a string/bytes. :raises JSONDecodeError: If JSON is requested and parsing is impossible. :raises UnicodeDecodeError: If bytes is not UTF8 + :rtype: object + :return: Unpacked content. """ # Assume this is enough to detect a Pipeline Response without importing it context = getattr(raw_data, "context", {}) @@ -1579,14 +1674,21 @@ def _unpack_content(raw_data, content_type=None): def _instantiate_model(self, response, attrs, additional_properties=None): """Instantiate a response model passing in deserialized args. - :param response: The response model class. - :param d_attrs: The deserialized response attributes. + :param Response response: The response model class. + :param dict attrs: The deserialized response attributes. + :param dict additional_properties: Additional properties to be set. + :rtype: Response + :return: The instantiated response model. """ if callable(response): subtype = getattr(response, "_subtype_map", {}) try: - readonly = [k for k, v in response._validation.items() if v.get("readonly")] - const = [k for k, v in response._validation.items() if v.get("constant")] + readonly = [ + k for k, v in response._validation.items() if v.get("readonly") # pylint: disable=protected-access + ] + const = [ + k for k, v in response._validation.items() if v.get("constant") # pylint: disable=protected-access + ] kwargs = {k: v for k, v in attrs.items() if k not in subtype and k not in readonly + const} response_obj = response(**kwargs) for attr in readonly: @@ -1596,7 +1698,7 @@ def _instantiate_model(self, response, attrs, additional_properties=None): return response_obj except TypeError as err: msg = "Unable to deserialize {} into model {}. ".format(kwargs, response) # type: ignore - raise DeserializationError(msg + str(err)) + raise DeserializationError(msg + str(err)) from err else: try: for attr, value in attrs.items(): @@ -1605,15 +1707,16 @@ def _instantiate_model(self, response, attrs, additional_properties=None): except Exception as exp: msg = "Unable to populate response model. " msg += "Type: {}, Error: {}".format(type(response), exp) - raise DeserializationError(msg) + raise DeserializationError(msg) from exp - def deserialize_data(self, data, data_type): + def deserialize_data(self, data, data_type): # pylint: disable=too-many-return-statements """Process data for deserialization according to data type. :param str data: The response string to be deserialized. :param str data_type: The type to deserialize to. :raises: DeserializationError if deserialization fails. :return: Deserialized object. + :rtype: object """ if data is None: return data @@ -1627,7 +1730,11 @@ def deserialize_data(self, data, data_type): if isinstance(data, self.deserialize_expected_types.get(data_type, tuple())): return data - is_a_text_parsing_type = lambda x: x not in ["object", "[]", r"{}"] + is_a_text_parsing_type = lambda x: x not in [ # pylint: disable=unnecessary-lambda-assignment + "object", + "[]", + r"{}", + ] if isinstance(data, ET.Element) and is_a_text_parsing_type(data_type) and not data.text: return None data_val = self.deserialize_type[data_type](data) @@ -1647,14 +1754,14 @@ def deserialize_data(self, data, data_type): msg = "Unable to deserialize response data." msg += " Data: {}, {}".format(data, data_type) raise DeserializationError(msg) from err - else: - return self._deserialize(obj_type, data) + return self._deserialize(obj_type, data) def deserialize_iter(self, attr, iter_type): """Deserialize an iterable. :param list attr: Iterable to be deserialized. :param str iter_type: The type of object in the iterable. + :return: Deserialized iterable. :rtype: list """ if attr is None: @@ -1671,6 +1778,7 @@ def deserialize_dict(self, attr, dict_type): :param dict/list attr: Dictionary to be deserialized. Also accepts a list of key, value pairs. :param str dict_type: The object type of the items in the dictionary. + :return: Deserialized dictionary. :rtype: dict """ if isinstance(attr, list): @@ -1681,11 +1789,12 @@ def deserialize_dict(self, attr, dict_type): attr = {el.tag: el.text for el in attr} return {k: self.deserialize_data(v, dict_type) for k, v in attr.items()} - def deserialize_object(self, attr, **kwargs): + def deserialize_object(self, attr, **kwargs): # pylint: disable=too-many-return-statements """Deserialize a generic object. This will be handled as a dictionary. :param dict attr: Dictionary to be deserialized. + :return: Deserialized object. :rtype: dict :raises: TypeError if non-builtin datatype encountered. """ @@ -1720,11 +1829,10 @@ def deserialize_object(self, attr, **kwargs): pass return deserialized - else: - error = "Cannot deserialize generic object with type: " - raise TypeError(error + str(obj_type)) + error = "Cannot deserialize generic object with type: " + raise TypeError(error + str(obj_type)) - def deserialize_basic(self, attr, data_type): + def deserialize_basic(self, attr, data_type): # pylint: disable=too-many-return-statements """Deserialize basic builtin data type from string. Will attempt to convert to str, int, float and bool. This function will also accept '1', '0', 'true' and 'false' as @@ -1732,6 +1840,7 @@ def deserialize_basic(self, attr, data_type): :param str attr: response string to be deserialized. :param str data_type: deserialization data type. + :return: Deserialized basic type. :rtype: str, int, float or bool :raises: TypeError if string format is not valid. """ @@ -1743,24 +1852,23 @@ def deserialize_basic(self, attr, data_type): if data_type == "str": # None or '', node is empty string. return "" - else: - # None or '', node with a strong type is None. - # Don't try to model "empty bool" or "empty int" - return None + # None or '', node with a strong type is None. + # Don't try to model "empty bool" or "empty int" + return None if data_type == "bool": if attr in [True, False, 1, 0]: return bool(attr) - elif isinstance(attr, str): + if isinstance(attr, str): if attr.lower() in ["true", "1"]: return True - elif attr.lower() in ["false", "0"]: + if attr.lower() in ["false", "0"]: return False raise TypeError("Invalid boolean value: {}".format(attr)) if data_type == "str": return self.deserialize_unicode(attr) - return eval(data_type)(attr) # nosec + return eval(data_type)(attr) # nosec # pylint: disable=eval-used @staticmethod def deserialize_unicode(data): @@ -1768,6 +1876,7 @@ def deserialize_unicode(data): as a string. :param str data: response string to be deserialized. + :return: Deserialized string. :rtype: str or unicode """ # We might be here because we have an enum modeled as string, @@ -1781,8 +1890,7 @@ def deserialize_unicode(data): return data except NameError: return str(data) - else: - return str(data) + return str(data) @staticmethod def deserialize_enum(data, enum_obj): @@ -1794,6 +1902,7 @@ def deserialize_enum(data, enum_obj): :param str data: Response string to be deserialized. If this value is None or invalid it will be returned as-is. :param Enum enum_obj: Enum object to deserialize to. + :return: Deserialized enum object. :rtype: Enum """ if isinstance(data, enum_obj) or data is None: @@ -1804,9 +1913,9 @@ def deserialize_enum(data, enum_obj): # Workaround. We might consider remove it in the future. try: return list(enum_obj.__members__.values())[data] - except IndexError: + except IndexError as exc: error = "{!r} is not a valid index for enum {!r}" - raise DeserializationError(error.format(data, enum_obj)) + raise DeserializationError(error.format(data, enum_obj)) from exc try: return enum_obj(str(data)) except ValueError: @@ -1822,6 +1931,7 @@ def deserialize_bytearray(attr): """Deserialize string into bytearray. :param str attr: response string to be deserialized. + :return: Deserialized bytearray :rtype: bytearray :raises: TypeError if string format invalid. """ @@ -1834,6 +1944,7 @@ def deserialize_base64(attr): """Deserialize base64 encoded string into string. :param str attr: response string to be deserialized. + :return: Deserialized base64 string :rtype: bytearray :raises: TypeError if string format invalid. """ @@ -1849,8 +1960,9 @@ def deserialize_decimal(attr): """Deserialize string into Decimal object. :param str attr: response string to be deserialized. - :rtype: Decimal + :return: Deserialized decimal :raises: DeserializationError if string format invalid. + :rtype: decimal """ if isinstance(attr, ET.Element): attr = attr.text @@ -1865,6 +1977,7 @@ def deserialize_long(attr): """Deserialize string into long (Py2) or int (Py3). :param str attr: response string to be deserialized. + :return: Deserialized int :rtype: long or int :raises: ValueError if string format invalid. """ @@ -1877,6 +1990,7 @@ def deserialize_duration(attr): """Deserialize ISO-8601 formatted string into TimeDelta object. :param str attr: response string to be deserialized. + :return: Deserialized duration :rtype: TimeDelta :raises: DeserializationError if string format invalid. """ @@ -1887,14 +2001,14 @@ def deserialize_duration(attr): except (ValueError, OverflowError, AttributeError) as err: msg = "Cannot deserialize duration object." raise DeserializationError(msg) from err - else: - return duration + return duration @staticmethod def deserialize_date(attr): """Deserialize ISO-8601 formatted string into Date object. :param str attr: response string to be deserialized. + :return: Deserialized date :rtype: Date :raises: DeserializationError if string format invalid. """ @@ -1910,6 +2024,7 @@ def deserialize_time(attr): """Deserialize ISO-8601 formatted string into time object. :param str attr: response string to be deserialized. + :return: Deserialized time :rtype: datetime.time :raises: DeserializationError if string format invalid. """ @@ -1924,6 +2039,7 @@ def deserialize_rfc(attr): """Deserialize RFC-1123 formatted string into Datetime object. :param str attr: response string to be deserialized. + :return: Deserialized RFC datetime :rtype: Datetime :raises: DeserializationError if string format invalid. """ @@ -1939,14 +2055,14 @@ def deserialize_rfc(attr): except ValueError as err: msg = "Cannot deserialize to rfc datetime object." raise DeserializationError(msg) from err - else: - return date_obj + return date_obj @staticmethod def deserialize_iso(attr): """Deserialize ISO-8601 formatted string into Datetime object. :param str attr: response string to be deserialized. + :return: Deserialized ISO datetime :rtype: Datetime :raises: DeserializationError if string format invalid. """ @@ -1976,8 +2092,7 @@ def deserialize_iso(attr): except (ValueError, OverflowError, AttributeError) as err: msg = "Cannot deserialize datetime object." raise DeserializationError(msg) from err - else: - return date_obj + return date_obj @staticmethod def deserialize_unix(attr): @@ -1985,6 +2100,7 @@ def deserialize_unix(attr): This is represented as seconds. :param int attr: Object to be serialized. + :return: Deserialized datetime :rtype: Datetime :raises: DeserializationError if format invalid """ @@ -1996,5 +2112,4 @@ def deserialize_unix(attr): except ValueError as err: msg = "Cannot deserialize to unix datetime object." raise DeserializationError(msg) from err - else: - return date_obj + return date_obj diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_validation.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_validation.py deleted file mode 100644 index 752b2822f9d3..000000000000 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_validation.py +++ /dev/null @@ -1,50 +0,0 @@ -# -------------------------------------------------------------------------- -# Copyright (c) Microsoft Corporation. All rights reserved. -# Licensed under the MIT License. See License.txt in the project root for license information. -# Code generated by Microsoft (R) Python Code Generator. -# Changes may cause incorrect behavior and will be lost if the code is regenerated. -# -------------------------------------------------------------------------- -import functools - - -def api_version_validation(**kwargs): - params_added_on = kwargs.pop("params_added_on", {}) - method_added_on = kwargs.pop("method_added_on", "") - - def decorator(func): - @functools.wraps(func) - def wrapper(*args, **kwargs): - try: - # this assumes the client has an _api_version attribute - client = args[0] - client_api_version = client._config.api_version # pylint: disable=protected-access - except AttributeError: - return func(*args, **kwargs) - - if method_added_on > client_api_version: - raise ValueError( - f"'{func.__name__}' is not available in API version " - f"{client_api_version}. Pass service API version {method_added_on} or newer to your client." - ) - - unsupported = { - parameter: api_version - for api_version, parameters in params_added_on.items() - for parameter in parameters - if parameter in kwargs and api_version > client_api_version - } - if unsupported: - raise ValueError( - "".join( - [ - f"'{param}' is not available in API version {client_api_version}. " - f"Use service API version {version} or newer.\n" - for param, version in unsupported.items() - ] - ) - ) - return func(*args, **kwargs) - - return wrapper - - return decorator diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_version.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_version.py index c7d155d924dd..bbcd28b4aa67 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_version.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/_version.py @@ -6,4 +6,4 @@ # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -VERSION = "1.0.0b5" +VERSION = "1.0.0b2" diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/__init__.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/__init__.py index 737422fc4e69..63adf2c71797 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/__init__.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/__init__.py @@ -6,18 +6,20 @@ # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -from ._patch import DocumentIntelligenceClient -from ._patch import DocumentIntelligenceAdministrationClient +from ._client import DocumentIntelligenceClient +from ._client import DocumentIntelligenceAdministrationClient - -from ._patch import AsyncAnalyzeDocumentLROPoller +try: + from ._patch import __all__ as _patch_all + from ._patch import * # pylint: disable=unused-wildcard-import +except ImportError: + _patch_all = [] from ._patch import patch_sdk as _patch_sdk __all__ = [ - "AsyncAnalyzeDocumentLROPoller", "DocumentIntelligenceClient", "DocumentIntelligenceAdministrationClient", ] - +__all__.extend([p for p in _patch_all if p not in __all__]) _patch_sdk() diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/_operations/__init__.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/_operations/__init__.py index 36334aa2ea34..057c6c92037f 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/_operations/__init__.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/_operations/__init__.py @@ -6,15 +6,16 @@ # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -from ._patch import DocumentIntelligenceClientOperationsMixin -from ._patch import DocumentIntelligenceAdministrationClientOperationsMixin - +from ._operations import DocumentIntelligenceClientOperationsMixin +from ._operations import DocumentIntelligenceAdministrationClientOperationsMixin +from ._patch import __all__ as _patch_all +from ._patch import * # pylint: disable=unused-wildcard-import from ._patch import patch_sdk as _patch_sdk __all__ = [ "DocumentIntelligenceClientOperationsMixin", "DocumentIntelligenceAdministrationClientOperationsMixin", ] - +__all__.extend([p for p in _patch_all if p not in __all__]) _patch_sdk() diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/_operations/_operations.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/_operations/_operations.py index d77704638d9a..f4d7220f6a38 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/_operations/_operations.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/_operations/_operations.py @@ -97,7 +97,7 @@ async def _analyze_document_initial( output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, **kwargs: Any ) -> AsyncIterator[bytes]: - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -190,7 +190,7 @@ async def begin_analyze_document( :type model_id: str :param analyze_request: Analyze request parameters. Default value is None. :type analyze_request: ~azure.ai.documentintelligence.models.AnalyzeDocumentRequest - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain @@ -242,7 +242,7 @@ async def begin_analyze_document( :type model_id: str :param analyze_request: Analyze request parameters. Default value is None. :type analyze_request: JSON - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain @@ -294,7 +294,7 @@ async def begin_analyze_document( :type model_id: str :param analyze_request: Analyze request parameters. Default value is None. :type analyze_request: IO[bytes] - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain @@ -347,7 +347,7 @@ async def begin_analyze_document( AnalyzeDocumentRequest, JSON, IO[bytes] Default value is None. :type analyze_request: ~azure.ai.documentintelligence.models.AnalyzeDocumentRequest or JSON or IO[bytes] - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain @@ -452,7 +452,7 @@ async def _analyze_batch_documents_initial( output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, **kwargs: Any ) -> AsyncIterator[bytes]: - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -545,7 +545,7 @@ async def begin_analyze_batch_documents( :type model_id: str :param analyze_batch_request: Analyze batch request parameters. Default value is None. :type analyze_batch_request: ~azure.ai.documentintelligence.models.AnalyzeBatchDocumentsRequest - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain @@ -598,7 +598,7 @@ async def begin_analyze_batch_documents( :type model_id: str :param analyze_batch_request: Analyze batch request parameters. Default value is None. :type analyze_batch_request: JSON - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain @@ -651,7 +651,7 @@ async def begin_analyze_batch_documents( :type model_id: str :param analyze_batch_request: Analyze batch request parameters. Default value is None. :type analyze_batch_request: IO[bytes] - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain @@ -705,7 +705,7 @@ async def begin_analyze_batch_documents( AnalyzeBatchDocumentsRequest, JSON, IO[bytes] Default value is None. :type analyze_batch_request: ~azure.ai.documentintelligence.models.AnalyzeBatchDocumentsRequest or JSON or IO[bytes] - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain @@ -809,7 +809,7 @@ async def get_analyze_result_pdf(self, model_id: str, result_id: str, **kwargs: :rtype: AsyncIterator[bytes] :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -877,7 +877,7 @@ async def get_analyze_result_figure( :rtype: AsyncIterator[bytes] :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -940,7 +940,7 @@ async def _classify_document_initial( pages: Optional[str] = None, **kwargs: Any ) -> AsyncIterator[bytes]: - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -1028,7 +1028,7 @@ async def begin_classify_document( :keyword split: Document splitting mode. Known values are: "auto", "none", and "perPage". Default value is None. :paramtype split: str or ~azure.ai.documentintelligence.models.SplitMode - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. @@ -1064,7 +1064,7 @@ async def begin_classify_document( :keyword split: Document splitting mode. Known values are: "auto", "none", and "perPage". Default value is None. :paramtype split: str or ~azure.ai.documentintelligence.models.SplitMode - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. @@ -1100,7 +1100,7 @@ async def begin_classify_document( :keyword split: Document splitting mode. Known values are: "auto", "none", and "perPage". Default value is None. :paramtype split: str or ~azure.ai.documentintelligence.models.SplitMode - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword content_type: Body Parameter content-type. Content type parameter for binary body. @@ -1137,7 +1137,7 @@ async def begin_classify_document( :keyword split: Document splitting mode. Known values are: "auto", "none", and "perPage". Default value is None. :paramtype split: str or ~azure.ai.documentintelligence.models.SplitMode - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is + :keyword pages: List of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :return: An instance of AsyncLROPoller that returns AnalyzeResult. The AnalyzeResult is @@ -1214,7 +1214,7 @@ class DocumentIntelligenceAdministrationClientOperationsMixin( # pylint: disabl async def _build_document_model_initial( self, build_request: Union[_models.BuildDocumentModelRequest, JSON, IO[bytes]], **kwargs: Any ) -> AsyncIterator[bytes]: - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -1404,7 +1404,7 @@ def get_long_running_output(pipeline_response): async def _compose_model_initial( self, compose_request: Union[_models.ComposeDocumentModelRequest, JSON, IO[bytes]], **kwargs: Any ) -> AsyncIterator[bytes]: - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -1665,7 +1665,7 @@ async def authorize_model_copy( :rtype: ~azure.ai.documentintelligence.models.CopyAuthorization :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -1728,7 +1728,7 @@ async def authorize_model_copy( async def _copy_model_to_initial( self, model_id: str, copy_to_request: Union[_models.CopyAuthorization, JSON, IO[bytes]], **kwargs: Any ) -> AsyncIterator[bytes]: - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -1940,7 +1940,7 @@ async def get_model(self, model_id: str, **kwargs: Any) -> _models.DocumentModel :rtype: ~azure.ai.documentintelligence.models.DocumentModelDetails :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2010,7 +2010,7 @@ def list_models(self, **kwargs: Any) -> AsyncIterable["_models.DocumentModelDeta cls: ClsType[List[_models.DocumentModelDetails]] = kwargs.pop("cls", None) - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2092,7 +2092,7 @@ async def delete_model( # pylint: disable=inconsistent-return-statements :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2144,7 +2144,7 @@ async def get_resource_info(self, **kwargs: Any) -> _models.ResourceDetails: :rtype: ~azure.ai.documentintelligence.models.ResourceDetails :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2204,7 +2204,7 @@ async def get_operation(self, operation_id: str, **kwargs: Any) -> _models.Opera :rtype: ~azure.ai.documentintelligence.models.OperationDetails :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2274,7 +2274,7 @@ def list_operations(self, **kwargs: Any) -> AsyncIterable["_models.OperationDeta cls: ClsType[List[_models.OperationDetails]] = kwargs.pop("cls", None) - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2347,7 +2347,7 @@ async def get_next(next_link=None): async def _build_classifier_initial( self, build_request: Union[_models.BuildDocumentClassifierRequest, JSON, IO[bytes]], **kwargs: Any ) -> AsyncIterator[bytes]: - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2613,7 +2613,7 @@ async def authorize_classifier_copy( :rtype: ~azure.ai.documentintelligence.models.ClassifierCopyAuthorization :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2679,7 +2679,7 @@ async def _copy_classifier_to_initial( copy_to_request: Union[_models.ClassifierCopyAuthorization, JSON, IO[bytes]], **kwargs: Any ) -> AsyncIterator[bytes]: - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2895,7 +2895,7 @@ async def get_classifier(self, classifier_id: str, **kwargs: Any) -> _models.Doc :rtype: ~azure.ai.documentintelligence.models.DocumentClassifierDetails :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -2965,7 +2965,7 @@ def list_classifiers(self, **kwargs: Any) -> AsyncIterable["_models.DocumentClas cls: ClsType[List[_models.DocumentClassifierDetails]] = kwargs.pop("cls", None) - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, @@ -3047,7 +3047,7 @@ async def delete_classifier( # pylint: disable=inconsistent-return-statements :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ - error_map: MutableMapping[int, Type[HttpResponseError]] = { + error_map: MutableMapping[int, Type[HttpResponseError]] = { # pylint: disable=unsubscriptable-object 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/_operations/_patch.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/_operations/_patch.py index 48f65e6f54cd..f7dd32510333 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/_operations/_patch.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/_operations/_patch.py @@ -6,617 +6,9 @@ Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize """ -import sys -from typing import Any, Callable, Dict, IO, List, Optional, TypeVar, Union, Mapping, cast, overload +from typing import List -from azure.core.pipeline import PipelineResponse -from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod -from azure.core.polling.async_base_polling import AsyncLROBasePolling -from azure.core.rest import AsyncHttpResponse, HttpRequest -from azure.core.tracing.decorator_async import distributed_trace_async -from azure.core.utils import case_insensitive_dict - -from ._operations import ( - DocumentIntelligenceClientOperationsMixin as GeneratedDIClientOps, - DocumentIntelligenceAdministrationClientOperationsMixin as GeneratedDIAdminClientOps, -) -from ... import models as _models -from ..._model_base import _deserialize -from ..._operations._patch import PollingReturnType_co, _parse_operation_id, _finished - -if sys.version_info >= (3, 9): - from collections.abc import MutableMapping -else: - from typing import MutableMapping # type: ignore # pylint: disable=ungrouped-imports -JSON = MutableMapping[str, Any] # pylint: disable=unsubscriptable-object -T = TypeVar("T") -ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] - - -class AsyncAnalyzeDocumentLROPoller(AsyncLROPoller[PollingReturnType_co]): - @property - def details(self) -> Mapping[str, Any]: - """Returns metadata associated with the long-running operation. - - :return: Returns metadata associated with the long-running operation. - :rtype: Mapping[str, Any] - """ - return { - "operation_id": _parse_operation_id( - self.polling_method()._initial_response.http_response.headers["Operation-Location"] # type: ignore # pylint: disable=protected-access - ), - } - - @classmethod - def from_continuation_token( - cls, polling_method: AsyncPollingMethod[PollingReturnType_co], continuation_token: str, **kwargs: Any - ) -> "AsyncAnalyzeDocumentLROPoller": - ( - client, - initial_response, - deserialization_callback, - ) = polling_method.from_continuation_token(continuation_token, **kwargs) - - return cls(client, initial_response, deserialization_callback, polling_method) - - -class AsyncAnalyzeBatchDocumentsLROPollingMethod(AsyncLROBasePolling): # pylint: disable=name-too-long - def finished(self) -> bool: - """Is this polling finished? - - :return: Whether the polling finished or not. - :rtype: bool - """ - return _finished(self.status()) - - -class DocumentIntelligenceAdministrationClientOperationsMixin( - GeneratedDIAdminClientOps -): # pylint: disable=name-too-long - @distributed_trace_async - async def begin_build_classifier( # type: ignore[override] - self, build_request: Union[_models.BuildDocumentClassifierRequest, JSON, IO[bytes]], **kwargs: Any - ) -> AsyncLROPoller[_models.DocumentClassifierDetails]: - _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) - _params = kwargs.pop("params", {}) or {} - - content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) - cls: ClsType[_models.DocumentClassifierDetails] = kwargs.pop("cls", None) - polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) - lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) - cont_token: Optional[str] = kwargs.pop("continuation_token", None) - if cont_token is None: - raw_result = await self._build_classifier_initial( # type: ignore - build_request=build_request, - content_type=content_type, - cls=lambda x, y, z: x, - headers=_headers, - params=_params, - **kwargs - ) - kwargs.pop("error_map", None) - - def get_long_running_output(pipeline_response): - response_headers = {} - response = pipeline_response.http_response - response_headers["Operation-Location"] = self._deserialize( - "str", response.headers.get("Operation-Location") - ) - - deserialized = _deserialize(_models.DocumentClassifierDetails, response.json()) - if cls: - return cls(pipeline_response, deserialized, response_headers) # type: ignore - return deserialized - - path_format_arguments = { - "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), - } - - if polling is True: - polling_method: AsyncPollingMethod = cast( - AsyncPollingMethod, - AsyncLROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs), - ) - elif polling is False: - polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) - else: - polling_method = polling - if cont_token: - return AsyncLROPoller[_models.DocumentClassifierDetails].from_continuation_token( - polling_method=polling_method, - continuation_token=cont_token, - client=self._client, - deserialization_callback=get_long_running_output, - ) - return AsyncLROPoller[_models.DocumentClassifierDetails]( - self._client, raw_result, get_long_running_output, polling_method # type: ignore - ) - - @distributed_trace_async - async def begin_build_document_model( # type: ignore[override] - self, build_request: Union[_models.BuildDocumentModelRequest, JSON, IO[bytes]], **kwargs: Any - ) -> AsyncLROPoller[_models.DocumentModelDetails]: - _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) - _params = kwargs.pop("params", {}) or {} - - content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) - cls: ClsType[_models.DocumentModelDetails] = kwargs.pop("cls", None) - polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) - lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) - cont_token: Optional[str] = kwargs.pop("continuation_token", None) - if cont_token is None: - raw_result = await self._build_document_model_initial( # type: ignore - build_request=build_request, - content_type=content_type, - cls=lambda x, y, z: x, - headers=_headers, - params=_params, - **kwargs - ) - kwargs.pop("error_map", None) - - def get_long_running_output(pipeline_response): - response_headers = {} - response = pipeline_response.http_response - response_headers["Operation-Location"] = self._deserialize( - "str", response.headers.get("Operation-Location") - ) - - deserialized = _deserialize(_models.DocumentModelDetails, response.json()) - if cls: - return cls(pipeline_response, deserialized, response_headers) # type: ignore - return deserialized - - path_format_arguments = { - "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), - } - - if polling is True: - polling_method: AsyncPollingMethod = cast( - AsyncPollingMethod, - AsyncLROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs), - ) - elif polling is False: - polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) - else: - polling_method = polling - if cont_token: - return AsyncLROPoller[_models.DocumentModelDetails].from_continuation_token( - polling_method=polling_method, - continuation_token=cont_token, - client=self._client, - deserialization_callback=get_long_running_output, - ) - return AsyncLROPoller[_models.DocumentModelDetails]( - self._client, raw_result, get_long_running_output, polling_method # type: ignore - ) - - @distributed_trace_async - async def begin_compose_model( # type: ignore[override] - self, compose_request: Union[_models.ComposeDocumentModelRequest, JSON, IO[bytes]], **kwargs: Any - ) -> AsyncLROPoller[_models.DocumentModelDetails]: - _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) - _params = kwargs.pop("params", {}) or {} - - content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) - cls: ClsType[_models.DocumentModelDetails] = kwargs.pop("cls", None) - polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) - lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) - cont_token: Optional[str] = kwargs.pop("continuation_token", None) - if cont_token is None: - raw_result = await self._compose_model_initial( # type: ignore - compose_request=compose_request, - content_type=content_type, - cls=lambda x, y, z: x, - headers=_headers, - params=_params, - **kwargs - ) - kwargs.pop("error_map", None) - - def get_long_running_output(pipeline_response): - response_headers = {} - response = pipeline_response.http_response - response_headers["Operation-Location"] = self._deserialize( - "str", response.headers.get("Operation-Location") - ) - - deserialized = _deserialize(_models.DocumentModelDetails, response.json()) - if cls: - return cls(pipeline_response, deserialized, response_headers) # type: ignore - return deserialized - - path_format_arguments = { - "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), - } - - if polling is True: - polling_method: AsyncPollingMethod = cast( - AsyncPollingMethod, - AsyncLROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs), - ) - elif polling is False: - polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) - else: - polling_method = polling - if cont_token: - return AsyncLROPoller[_models.DocumentModelDetails].from_continuation_token( - polling_method=polling_method, - continuation_token=cont_token, - client=self._client, - deserialization_callback=get_long_running_output, - ) - return AsyncLROPoller[_models.DocumentModelDetails]( - self._client, raw_result, get_long_running_output, polling_method # type: ignore - ) - - @distributed_trace_async - async def begin_copy_model_to( # type: ignore[override] - self, model_id: str, copy_to_request: Union[_models.CopyAuthorization, JSON, IO[bytes]], **kwargs: Any - ) -> AsyncLROPoller[_models.DocumentModelDetails]: - _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) - _params = kwargs.pop("params", {}) or {} - - content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) - cls: ClsType[_models.DocumentModelDetails] = kwargs.pop("cls", None) - polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) - lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) - cont_token: Optional[str] = kwargs.pop("continuation_token", None) - if cont_token is None: - raw_result = await self._copy_model_to_initial( # type: ignore - model_id=model_id, - copy_to_request=copy_to_request, - content_type=content_type, - cls=lambda x, y, z: x, - headers=_headers, - params=_params, - **kwargs - ) - kwargs.pop("error_map", None) - - def get_long_running_output(pipeline_response): - response_headers = {} - response = pipeline_response.http_response - response_headers["Operation-Location"] = self._deserialize( - "str", response.headers.get("Operation-Location") - ) - - deserialized = _deserialize(_models.DocumentModelDetails, response.json()) - if cls: - return cls(pipeline_response, deserialized, response_headers) # type: ignore - return deserialized - - path_format_arguments = { - "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), - } - - if polling is True: - polling_method: AsyncPollingMethod = cast( - AsyncPollingMethod, - AsyncLROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs), - ) - elif polling is False: - polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) - else: - polling_method = polling - if cont_token: - return AsyncLROPoller[_models.DocumentModelDetails].from_continuation_token( - polling_method=polling_method, - continuation_token=cont_token, - client=self._client, - deserialization_callback=get_long_running_output, - ) - return AsyncLROPoller[_models.DocumentModelDetails]( - self._client, raw_result, get_long_running_output, polling_method # type: ignore - ) - - -class DocumentIntelligenceClientOperationsMixin(GeneratedDIClientOps): # pylint: disable=name-too-long - @overload - async def begin_analyze_document( - self, - model_id: str, - analyze_request: Optional[_models.AnalyzeDocumentRequest] = None, - *, - pages: Optional[str] = None, - locale: Optional[str] = None, - string_index_type: Optional[Union[str, _models.StringIndexType]] = None, - features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, - query_fields: Optional[List[str]] = None, - output_content_format: Optional[Union[str, _models.ContentFormat]] = None, - output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, - content_type: str = "application/json", - **kwargs: Any - ) -> AsyncAnalyzeDocumentLROPoller[_models.AnalyzeResult]: - """Analyzes document with document model. - - :param model_id: Unique document model name. Required. - :type model_id: str - :param analyze_request: Analyze request parameters. Default value is None. - :type analyze_request: ~azure.ai.documentintelligence.models.AnalyzeDocumentRequest - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is - None. - :paramtype pages: str - :keyword locale: Locale hint for text recognition and document analysis. Value may contain - only - the language code (ex. "en", "fr") or BCP 47 language tag (ex. "en-US"). Default value is - None. - :paramtype locale: str - :keyword string_index_type: Method used to compute string offset and length. Known values are: - "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. - :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType - :keyword features: List of optional analysis features. Default value is None. - :paramtype features: list[str or ~azure.ai.documentintelligence.models.DocumentAnalysisFeature] - :keyword query_fields: List of additional fields to extract. Ex. "NumberOfGuests,StoreNumber". - Default value is None. - :paramtype query_fields: list[str] - :keyword output_content_format: Format of the analyze result top-level content. Known values - are: "text" and "markdown". Default value is None. - :paramtype output_content_format: str or ~azure.ai.documentintelligence.models.ContentFormat - :keyword output: Additional outputs to generate during analysis. Default value is None. - :paramtype output: list[str or ~azure.ai.documentintelligence.models.AnalyzeOutputOption] - :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. - Default value is "application/json". - :paramtype content_type: str - :return: An instance of AsyncAnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is - compatible with MutableMapping - :rtype: AsyncAnalyzeDocumentLROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] - :raises ~azure.core.exceptions.HttpResponseError: - """ - - @overload - async def begin_analyze_document( - self, - model_id: str, - analyze_request: Optional[JSON] = None, - *, - pages: Optional[str] = None, - locale: Optional[str] = None, - string_index_type: Optional[Union[str, _models.StringIndexType]] = None, - features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, - query_fields: Optional[List[str]] = None, - output_content_format: Optional[Union[str, _models.ContentFormat]] = None, - output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, - content_type: str = "application/json", - **kwargs: Any - ) -> AsyncAnalyzeDocumentLROPoller[_models.AnalyzeResult]: - """Analyzes document with document model. - - :param model_id: Unique document model name. Required. - :type model_id: str - :param analyze_request: Analyze request parameters. Default value is None. - :type analyze_request: JSON - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is - None. - :paramtype pages: str - :keyword locale: Locale hint for text recognition and document analysis. Value may contain - only - the language code (ex. "en", "fr") or BCP 47 language tag (ex. "en-US"). Default value is - None. - :paramtype locale: str - :keyword string_index_type: Method used to compute string offset and length. Known values are: - "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. - :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType - :keyword features: List of optional analysis features. Default value is None. - :paramtype features: list[str or ~azure.ai.documentintelligence.models.DocumentAnalysisFeature] - :keyword query_fields: List of additional fields to extract. Ex. "NumberOfGuests,StoreNumber". - Default value is None. - :paramtype query_fields: list[str] - :keyword output_content_format: Format of the analyze result top-level content. Known values - are: "text" and "markdown". Default value is None. - :paramtype output_content_format: str or ~azure.ai.documentintelligence.models.ContentFormat - :keyword output: Additional outputs to generate during analysis. Default value is None. - :paramtype output: list[str or ~azure.ai.documentintelligence.models.AnalyzeOutputOption] - :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. - Default value is "application/json". - :paramtype content_type: str - :return: An instance of AsyncAnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is - compatible with MutableMapping - :rtype: AsyncAnalyzeDocumentLROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] - :raises ~azure.core.exceptions.HttpResponseError: - """ - - @overload - async def begin_analyze_document( - self, - model_id: str, - analyze_request: Optional[IO[bytes]] = None, - *, - pages: Optional[str] = None, - locale: Optional[str] = None, - string_index_type: Optional[Union[str, _models.StringIndexType]] = None, - features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, - query_fields: Optional[List[str]] = None, - output_content_format: Optional[Union[str, _models.ContentFormat]] = None, - output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, - content_type: str = "application/json", - **kwargs: Any - ) -> AsyncAnalyzeDocumentLROPoller[_models.AnalyzeResult]: - """Analyzes document with document model. - - :param model_id: Unique document model name. Required. - :type model_id: str - :param analyze_request: Analyze request parameters. Default value is None. - :type analyze_request: IO[bytes] - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is - None. - :paramtype pages: str - :keyword locale: Locale hint for text recognition and document analysis. Value may contain - only - the language code (ex. "en", "fr") or BCP 47 language tag (ex. "en-US"). Default value is - None. - :paramtype locale: str - :keyword string_index_type: Method used to compute string offset and length. Known values are: - "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. - :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType - :keyword features: List of optional analysis features. Default value is None. - :paramtype features: list[str or ~azure.ai.documentintelligence.models.DocumentAnalysisFeature] - :keyword query_fields: List of additional fields to extract. Ex. "NumberOfGuests,StoreNumber". - Default value is None. - :paramtype query_fields: list[str] - :keyword output_content_format: Format of the analyze result top-level content. Known values - are: "text" and "markdown". Default value is None. - :paramtype output_content_format: str or ~azure.ai.documentintelligence.models.ContentFormat - :keyword output: Additional outputs to generate during analysis. Default value is None. - :paramtype output: list[str or ~azure.ai.documentintelligence.models.AnalyzeOutputOption] - :keyword content_type: Body Parameter content-type. Content type parameter for binary body. - Default value is "application/json". - :paramtype content_type: str - :return: An instance of AsyncAnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is - compatible with MutableMapping - :rtype: AsyncAnalyzeDocumentLROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] - :raises ~azure.core.exceptions.HttpResponseError: - """ - - @distributed_trace_async - async def begin_analyze_document( # type: ignore[override] - self, - model_id: str, - analyze_request: Optional[Union[_models.AnalyzeDocumentRequest, JSON, IO[bytes]]] = None, - *, - pages: Optional[str] = None, - locale: Optional[str] = None, - string_index_type: Optional[Union[str, _models.StringIndexType]] = None, - features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, - query_fields: Optional[List[str]] = None, - output_content_format: Optional[Union[str, _models.ContentFormat]] = None, - output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, - **kwargs: Any - ) -> AsyncAnalyzeDocumentLROPoller[_models.AnalyzeResult]: - """Analyzes document with document model. - - :param model_id: Unique document model name. Required. - :type model_id: str - :param analyze_request: Analyze request parameters. Is one of the following types: - AnalyzeDocumentRequest, JSON, IO[bytes] Default value is None. - :type analyze_request: ~azure.ai.documentintelligence.models.AnalyzeDocumentRequest or JSON or - IO[bytes] - :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is - None. - :paramtype pages: str - :keyword locale: Locale hint for text recognition and document analysis. Value may contain - only - the language code (ex. "en", "fr") or BCP 47 language tag (ex. "en-US"). Default value is - None. - :paramtype locale: str - :keyword string_index_type: Method used to compute string offset and length. Known values are: - "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. - :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType - :keyword features: List of optional analysis features. Default value is None. - :paramtype features: list[str or ~azure.ai.documentintelligence.models.DocumentAnalysisFeature] - :keyword query_fields: List of additional fields to extract. Ex. "NumberOfGuests,StoreNumber". - Default value is None. - :paramtype query_fields: list[str] - :keyword output_content_format: Format of the analyze result top-level content. Known values - are: "text" and "markdown". Default value is None. - :paramtype output_content_format: str or ~azure.ai.documentintelligence.models.ContentFormat - :keyword output: Additional outputs to generate during analysis. Default value is None. - :paramtype output: list[str or ~azure.ai.documentintelligence.models.AnalyzeOutputOption] - :return: An instance of AsyncAnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is - compatible with MutableMapping - :rtype: AsyncAnalyzeDocumentLROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] - :raises ~azure.core.exceptions.HttpResponseError: - """ - _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) - _params = kwargs.pop("params", {}) or {} - - content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("content-type", None)) - cls: ClsType[_models.AnalyzeResult] = kwargs.pop("cls", None) - polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) - lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) - cont_token: Optional[str] = kwargs.pop("continuation_token", None) - if cont_token is None: - raw_result = await self._analyze_document_initial( - model_id=model_id, - analyze_request=analyze_request, - pages=pages, - locale=locale, - string_index_type=string_index_type, - features=features, - query_fields=query_fields, - output_content_format=output_content_format, - output=output, - content_type=content_type, - cls=lambda x, y, z: x, - headers=_headers, - params=_params, - **kwargs - ) - await raw_result.http_response.read() # type: ignore - kwargs.pop("error_map", None) - - def get_long_running_output(pipeline_response): - response_headers = {} - response = pipeline_response.http_response - response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) - response_headers["Operation-Location"] = self._deserialize( - "str", response.headers.get("Operation-Location") - ) - - deserialized = _deserialize(_models.AnalyzeResult, response.json().get("analyzeResult")) - if cls: - return cls(pipeline_response, deserialized, response_headers) # type: ignore - return deserialized - - path_format_arguments = { - "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), - } - - if polling is True: - polling_method: AsyncPollingMethod = cast( - AsyncPollingMethod, - AsyncLROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs), - ) - elif polling is False: - polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) - else: - polling_method = polling - if cont_token: - return AsyncAnalyzeDocumentLROPoller[_models.AnalyzeBatchResult].from_continuation_token( - polling_method=polling_method, - continuation_token=cont_token, - client=self._client, - deserialization_callback=get_long_running_output, - ) - return AsyncAnalyzeDocumentLROPoller[_models.AnalyzeResult]( - self._client, raw_result, get_long_running_output, polling_method # type: ignore - ) - - @distributed_trace_async - async def begin_analyze_batch_documents( # type: ignore[override] - self, - model_id: str, - analyze_batch_request: Optional[Union[_models.AnalyzeBatchDocumentsRequest, JSON, IO[bytes]]] = None, - *, - pages: Optional[str] = None, - locale: Optional[str] = None, - string_index_type: Optional[Union[str, _models.StringIndexType]] = None, - features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, - query_fields: Optional[List[str]] = None, - output_content_format: Optional[Union[str, _models.ContentFormat]] = None, - output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, - **kwargs: Any - ) -> AsyncLROPoller[_models.AnalyzeBatchResult]: - lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) - return await super().begin_analyze_batch_documents( - model_id=model_id, - analyze_batch_request=analyze_batch_request, - pages=pages, - locale=locale, - string_index_type=string_index_type, - features=features, - query_fields=query_fields, - output_content_format=output_content_format, - output=output, - polling=AsyncAnalyzeBatchDocumentsLROPollingMethod(timeout=lro_delay), - **kwargs - ) - - -__all__: List[str] = [ - "DocumentIntelligenceClientOperationsMixin", - "DocumentIntelligenceAdministrationClientOperationsMixin", -] # Add all objects you want publicly available to users at this package level +__all__: List[str] = [] # Add all objects you want publicly available to users at this package level def patch_sdk(): diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/_patch.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/_patch.py index 4ba9c2d81830..f7dd32510333 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/_patch.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/aio/_patch.py @@ -6,87 +6,9 @@ Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize """ -from typing import Any, List, Union +from typing import List -from azure.core.credentials import AzureKeyCredential -from azure.core.credentials_async import AsyncTokenCredential - -from ._client import ( - DocumentIntelligenceClient as DIClientGenerated, - DocumentIntelligenceAdministrationClient as DIAClientGenerated, -) -from ..aio._operations._patch import AsyncAnalyzeDocumentLROPoller - - -class DocumentIntelligenceClient(DIClientGenerated): # pylint: disable=client-accepts-api-version-keyword - """DocumentIntelligenceClient. - - :param endpoint: The Document Intelligence service endpoint. Required. - :type endpoint: str - :param credential: Credential needed for the client to connect to Azure. Is either a - AzureKeyCredential type or a TokenCredential type. Required. - :type credential: ~azure.core.credentials.AzureKeyCredential or - ~azure.core.credentials_async.AsyncTokenCredential - :keyword api_version: The API version to use for this operation. Default value is - "2024-07-31-preview". Note that overriding this default value may result in unsupported - behavior. - :paramtype api_version: str - """ - - def __init__( - self, - endpoint: str, - credential: Union[AzureKeyCredential, AsyncTokenCredential], - **kwargs: Any, - ) -> None: - # Patch the default polling interval to be 1s. - polling_interval = kwargs.pop("polling_interval", 1) - super().__init__( - endpoint=endpoint, - credential=credential, - polling_interval=polling_interval, - **kwargs, - ) - - -class DocumentIntelligenceAdministrationClient( - DIAClientGenerated -): # pylint: disable=client-accepts-api-version-keyword - """DocumentIntelligenceAdministrationClient. - - :param endpoint: The Document Intelligence service endpoint. Required. - :type endpoint: str - :param credential: Credential needed for the client to connect to Azure. Is either a - AzureKeyCredential type or a TokenCredential type. Required. - :type credential: ~azure.core.credentials.AzureKeyCredential or - ~azure.core.credentials_async.AsyncTokenCredential - :keyword api_version: The API version to use for this operation. Default value is - "2024-07-31-preview". Note that overriding this default value may result in unsupported - behavior. - :paramtype api_version: str - """ - - def __init__( - self, - endpoint: str, - credential: Union[AzureKeyCredential, AsyncTokenCredential], - **kwargs: Any, - ) -> None: - # Patch the default polling interval to be 1s. - polling_interval = kwargs.pop("polling_interval", 1) - super().__init__( - endpoint=endpoint, - credential=credential, - polling_interval=polling_interval, - **kwargs, - ) - - -__all__: List[str] = [ - "DocumentIntelligenceClient", - "DocumentIntelligenceAdministrationClient", - "AsyncAnalyzeDocumentLROPoller", -] # Add all objects you want publicly available to users at this package level +__all__: List[str] = [] # Add all objects you want publicly available to users at this package level def patch_sdk(): diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/models/__init__.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/models/__init__.py index 260c9effd5ed..1207ac80a628 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/models/__init__.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/models/__init__.py @@ -11,7 +11,7 @@ from ._models import AnalyzeBatchOperationDetail from ._models import AnalyzeBatchResult from ._models import AnalyzeBatchResultOperation -from ._patch import AnalyzeDocumentRequest +from ._models import AnalyzeDocumentRequest from ._models import AnalyzeResult from ._models import AnalyzeResultOperation from ._models import AuthorizeClassifierCopyRequest @@ -23,7 +23,7 @@ from ._models import BuildDocumentModelRequest from ._models import ClassifierCopyAuthorization from ._models import ClassifierDocumentTypeDetails -from ._patch import ClassifyDocumentRequest +from ._models import ClassifyDocumentRequest from ._models import ComposeDocumentModelRequest from ._models import CopyAuthorization from ._models import CurrencyValue @@ -83,7 +83,8 @@ from ._enums import ParagraphRole from ._enums import SplitMode from ._enums import StringIndexType - +from ._patch import __all__ as _patch_all +from ._patch import * # pylint: disable=unused-wildcard-import from ._patch import patch_sdk as _patch_sdk __all__ = [ @@ -164,5 +165,5 @@ "SplitMode", "StringIndexType", ] - +__all__.extend([p for p in _patch_all if p not in __all__]) _patch_sdk() diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/models/_enums.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/models/_enums.py index 64c43bc8990c..de21b9aa550e 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/models/_enums.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/models/_enums.py @@ -64,7 +64,7 @@ class DocumentAnalysisFeature(str, Enum, metaclass=CaseInsensitiveEnumMeta): class DocumentBarcodeKind(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Barcode kind.""" - Q_R_CODE = "QRCode" + QR_CODE = "QRCode" """QR code, as defined in ISO/IEC 18004:2015.""" PDF417 = "PDF417" """PDF417, as defined in ISO 15438.""" @@ -90,7 +90,7 @@ class DocumentBarcodeKind(str, Enum, metaclass=CaseInsensitiveEnumMeta): """GS1 DataBar Expanded barcode.""" ITF = "ITF" """Interleaved 2 of 5 barcode, as defined in ANSI/AIM BC2-1995.""" - MICRO_Q_R_CODE = "MicroQRCode" + MICRO_QR_CODE = "MicroQRCode" """Micro QR code, as defined in ISO/IEC 23941:2022.""" AZTEC = "Aztec" """Aztec code, as defined in ISO/IEC 24778:2008.""" diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/models/_models.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/models/_models.py index ca357225b5aa..577ab5350c6b 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/models/_models.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/models/_models.py @@ -2027,7 +2027,7 @@ class DocumentLanguage(_model_base.Model): :ivar locale: Detected language. Value may an ISO 639-1 language code (ex. "en", "fr") or BCP 47 language tag (ex. "zh-Hans"). Required. - :vartype locale: str + :vartype locale: int :ivar spans: Location of the text elements in the concatenated content the language applies to. Required. :vartype spans: list[~azure.ai.documentintelligence.models.DocumentSpan] @@ -2035,7 +2035,7 @@ class DocumentLanguage(_model_base.Model): :vartype confidence: float """ - locale: str = rest_field() + locale: int = rest_field() """Detected language. Value may an ISO 639-1 language code (ex. \"en\", \"fr\") or BCP 47 language tag (ex. \"zh-Hans\"). Required.""" spans: List["_models.DocumentSpan"] = rest_field() @@ -2048,7 +2048,7 @@ class DocumentLanguage(_model_base.Model): def __init__( self, *, - locale: str, + locale: int, spans: List["_models.DocumentSpan"], confidence: float, ): ... diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/models/_patch.py b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/models/_patch.py index c385980aebd5..f7dd32510333 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/models/_patch.py +++ b/sdk/documentintelligence/azure-ai-documentintelligence/azure/ai/documentintelligence/models/_patch.py @@ -6,45 +6,9 @@ Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize """ -from typing import List, Optional -from ._models import ( - AnalyzeDocumentRequest as GeneratedAnalyzeDocumentRequest, - ClassifyDocumentRequest as GeneratedClassifyDocumentRequest, -) -from .._model_base import rest_field +from typing import List - -class AnalyzeDocumentRequest(GeneratedAnalyzeDocumentRequest): - """Document analysis parameters. - - :ivar url_source: Document URL to analyze. Either url_source or bytes_source must be specified. - :vartype url_source: str - :ivar bytes_source: Document bytes to analyze. Either url_source or bytes_source must be specified. - :vartype bytes_source: bytes - """ - - bytes_source: Optional[bytes] = rest_field(name="base64Source", format="base64") - """Document bytes to analyze. Either url_source or bytes_source must be specified.""" - - -class ClassifyDocumentRequest(GeneratedClassifyDocumentRequest): - """Document classification parameters. - - :ivar url_source: Document URL to classify. Either url_source or bytes_source must be - specified. - :vartype url_source: str - :ivar bytes_source: Document bytes to classify. Either url_source or bytes_source must be specified. - :vartype bytes_source: bytes - """ - - bytes_source: Optional[bytes] = rest_field(name="base64Source", format="base64") - """Document bytes to classify. Either url_source or bytes_source must be specified.""" - - -__all__: List[str] = [ - "AnalyzeDocumentRequest", - "ClassifyDocumentRequest", -] # Add all objects you want publicly available to users at this package level +__all__: List[str] = [] # Add all objects you want publicly available to users at this package level def patch_sdk(): diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/conftest.py b/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/conftest.py new file mode 100644 index 000000000000..a02bf102439b --- /dev/null +++ b/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/conftest.py @@ -0,0 +1,70 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) Python Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +import os +import pytest +from dotenv import load_dotenv +from devtools_testutils import ( + test_proxy, + add_general_regex_sanitizer, + add_body_key_sanitizer, + add_header_regex_sanitizer, +) + +load_dotenv() + + +# aovid record sensitive identity information in recordings +@pytest.fixture(scope="session", autouse=True) +def add_sanitizers(test_proxy): + documentintelligence_subscription_id = os.environ.get( + "DOCUMENTINTELLIGENCE_SUBSCRIPTION_ID", "00000000-0000-0000-0000-000000000000" + ) + documentintelligence_tenant_id = os.environ.get( + "DOCUMENTINTELLIGENCE_TENANT_ID", "00000000-0000-0000-0000-000000000000" + ) + documentintelligence_client_id = os.environ.get( + "DOCUMENTINTELLIGENCE_CLIENT_ID", "00000000-0000-0000-0000-000000000000" + ) + documentintelligence_client_secret = os.environ.get( + "DOCUMENTINTELLIGENCE_CLIENT_SECRET", "00000000-0000-0000-0000-000000000000" + ) + add_general_regex_sanitizer( + regex=documentintelligence_subscription_id, value="00000000-0000-0000-0000-000000000000" + ) + add_general_regex_sanitizer(regex=documentintelligence_tenant_id, value="00000000-0000-0000-0000-000000000000") + add_general_regex_sanitizer(regex=documentintelligence_client_id, value="00000000-0000-0000-0000-000000000000") + add_general_regex_sanitizer(regex=documentintelligence_client_secret, value="00000000-0000-0000-0000-000000000000") + + documentintelligenceadministration_subscription_id = os.environ.get( + "DOCUMENTINTELLIGENCEADMINISTRATION_SUBSCRIPTION_ID", "00000000-0000-0000-0000-000000000000" + ) + documentintelligenceadministration_tenant_id = os.environ.get( + "DOCUMENTINTELLIGENCEADMINISTRATION_TENANT_ID", "00000000-0000-0000-0000-000000000000" + ) + documentintelligenceadministration_client_id = os.environ.get( + "DOCUMENTINTELLIGENCEADMINISTRATION_CLIENT_ID", "00000000-0000-0000-0000-000000000000" + ) + documentintelligenceadministration_client_secret = os.environ.get( + "DOCUMENTINTELLIGENCEADMINISTRATION_CLIENT_SECRET", "00000000-0000-0000-0000-000000000000" + ) + add_general_regex_sanitizer( + regex=documentintelligenceadministration_subscription_id, value="00000000-0000-0000-0000-000000000000" + ) + add_general_regex_sanitizer( + regex=documentintelligenceadministration_tenant_id, value="00000000-0000-0000-0000-000000000000" + ) + add_general_regex_sanitizer( + regex=documentintelligenceadministration_client_id, value="00000000-0000-0000-0000-000000000000" + ) + add_general_regex_sanitizer( + regex=documentintelligenceadministration_client_secret, value="00000000-0000-0000-0000-000000000000" + ) + + add_header_regex_sanitizer(key="Set-Cookie", value="[set-cookie;]") + add_header_regex_sanitizer(key="Cookie", value="cookie;") + add_body_key_sanitizer(json_path="$..access_token", value="access_token") diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/test_document_intelligence.py b/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/test_document_intelligence.py new file mode 100644 index 000000000000..a2d8979b91ef --- /dev/null +++ b/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/test_document_intelligence.py @@ -0,0 +1,72 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) Python Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +import pytest +from devtools_testutils import recorded_by_proxy +from testpreparer import DocumentIntelligenceClientTestBase, DocumentIntelligencePreparer + + +@pytest.mark.skip("you may need to update the auto-generated test case before run it") +class TestDocumentIntelligence(DocumentIntelligenceClientTestBase): + @DocumentIntelligencePreparer() + @recorded_by_proxy + def test_begin_analyze_document(self, documentintelligence_endpoint): + client = self.create_client(endpoint=documentintelligence_endpoint) + response = client.begin_analyze_document( + model_id="str", + ).result() # call '.result()' to poll until service return final result + + # please add some check logic here by yourself + # ... + + @DocumentIntelligencePreparer() + @recorded_by_proxy + def test_begin_analyze_batch_documents(self, documentintelligence_endpoint): + client = self.create_client(endpoint=documentintelligence_endpoint) + response = client.begin_analyze_batch_documents( + model_id="str", + ).result() # call '.result()' to poll until service return final result + + # please add some check logic here by yourself + # ... + + @DocumentIntelligencePreparer() + @recorded_by_proxy + def test_get_analyze_result_pdf(self, documentintelligence_endpoint): + client = self.create_client(endpoint=documentintelligence_endpoint) + response = client.get_analyze_result_pdf( + model_id="str", + result_id="str", + ) + + # please add some check logic here by yourself + # ... + + @DocumentIntelligencePreparer() + @recorded_by_proxy + def test_get_analyze_result_figure(self, documentintelligence_endpoint): + client = self.create_client(endpoint=documentintelligence_endpoint) + response = client.get_analyze_result_figure( + model_id="str", + result_id="str", + figure_id="str", + ) + + # please add some check logic here by yourself + # ... + + @DocumentIntelligencePreparer() + @recorded_by_proxy + def test_begin_classify_document(self, documentintelligence_endpoint): + client = self.create_client(endpoint=documentintelligence_endpoint) + response = client.begin_classify_document( + classifier_id="str", + classify_request={"base64Source": bytes("bytes", encoding="utf-8"), "urlSource": "str"}, + ).result() # call '.result()' to poll until service return final result + + # please add some check logic here by yourself + # ... diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/test_document_intelligence_administration.py b/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/test_document_intelligence_administration.py new file mode 100644 index 000000000000..a149bfd573ce --- /dev/null +++ b/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/test_document_intelligence_administration.py @@ -0,0 +1,245 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) Python Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +import pytest +from devtools_testutils import recorded_by_proxy +from testpreparer import DocumentIntelligenceAdministrationClientTestBase, DocumentIntelligenceAdministrationPreparer + + +@pytest.mark.skip("you may need to update the auto-generated test case before run it") +class TestDocumentIntelligenceAdministration(DocumentIntelligenceAdministrationClientTestBase): + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy + def test_begin_build_document_model(self, documentintelligenceadministration_endpoint): + client = self.create_client(endpoint=documentintelligenceadministration_endpoint) + response = client.begin_build_document_model( + build_request={ + "buildMode": "str", + "modelId": "str", + "allowOverwrite": bool, + "azureBlobFileListSource": {"containerUrl": "str", "fileList": "str"}, + "azureBlobSource": {"containerUrl": "str", "prefix": "str"}, + "description": "str", + "maxTrainingHours": 0.0, + "tags": {"str": "str"}, + }, + ).result() # call '.result()' to poll until service return final result + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy + def test_begin_compose_model(self, documentintelligenceadministration_endpoint): + client = self.create_client(endpoint=documentintelligenceadministration_endpoint) + response = client.begin_compose_model( + compose_request={ + "classifierId": "str", + "docTypes": { + "str": { + "buildMode": "str", + "confidenceThreshold": 0.0, + "description": "str", + "features": ["str"], + "fieldConfidence": {"str": 0.0}, + "fieldSchema": { + "str": { + "type": "str", + "description": "str", + "example": "str", + "items": ..., + "properties": {"str": ...}, + } + }, + "maxDocumentsToAnalyze": 0, + "modelId": "str", + "queryFields": ["str"], + } + }, + "modelId": "str", + "description": "str", + "split": "str", + "tags": {"str": "str"}, + }, + ).result() # call '.result()' to poll until service return final result + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy + def test_authorize_model_copy(self, documentintelligenceadministration_endpoint): + client = self.create_client(endpoint=documentintelligenceadministration_endpoint) + response = client.authorize_model_copy( + authorize_copy_request={"modelId": "str", "description": "str", "tags": {"str": "str"}}, + ) + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy + def test_begin_copy_model_to(self, documentintelligenceadministration_endpoint): + client = self.create_client(endpoint=documentintelligenceadministration_endpoint) + response = client.begin_copy_model_to( + model_id="str", + copy_to_request={ + "accessToken": "str", + "expirationDateTime": "2020-02-20 00:00:00", + "targetModelId": "str", + "targetModelLocation": "str", + "targetResourceId": "str", + "targetResourceRegion": "str", + }, + ).result() # call '.result()' to poll until service return final result + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy + def test_get_model(self, documentintelligenceadministration_endpoint): + client = self.create_client(endpoint=documentintelligenceadministration_endpoint) + response = client.get_model( + model_id="str", + ) + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy + def test_list_models(self, documentintelligenceadministration_endpoint): + client = self.create_client(endpoint=documentintelligenceadministration_endpoint) + response = client.list_models() + result = [r for r in response] + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy + def test_delete_model(self, documentintelligenceadministration_endpoint): + client = self.create_client(endpoint=documentintelligenceadministration_endpoint) + response = client.delete_model( + model_id="str", + ) + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy + def test_get_resource_info(self, documentintelligenceadministration_endpoint): + client = self.create_client(endpoint=documentintelligenceadministration_endpoint) + response = client.get_resource_info() + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy + def test_get_operation(self, documentintelligenceadministration_endpoint): + client = self.create_client(endpoint=documentintelligenceadministration_endpoint) + response = client.get_operation( + operation_id="str", + ) + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy + def test_list_operations(self, documentintelligenceadministration_endpoint): + client = self.create_client(endpoint=documentintelligenceadministration_endpoint) + response = client.list_operations() + result = [r for r in response] + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy + def test_begin_build_classifier(self, documentintelligenceadministration_endpoint): + client = self.create_client(endpoint=documentintelligenceadministration_endpoint) + response = client.begin_build_classifier( + build_request={ + "classifierId": "str", + "docTypes": { + "str": { + "azureBlobFileListSource": {"containerUrl": "str", "fileList": "str"}, + "azureBlobSource": {"containerUrl": "str", "prefix": "str"}, + "sourceKind": "str", + } + }, + "allowOverwrite": bool, + "baseClassifierId": "str", + "description": "str", + }, + ).result() # call '.result()' to poll until service return final result + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy + def test_authorize_classifier_copy(self, documentintelligenceadministration_endpoint): + client = self.create_client(endpoint=documentintelligenceadministration_endpoint) + response = client.authorize_classifier_copy( + authorize_copy_request={"classifierId": "str", "description": "str", "tags": {"str": "str"}}, + ) + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy + def test_begin_copy_classifier_to(self, documentintelligenceadministration_endpoint): + client = self.create_client(endpoint=documentintelligenceadministration_endpoint) + response = client.begin_copy_classifier_to( + classifier_id="str", + copy_to_request={ + "accessToken": "str", + "expirationDateTime": "2020-02-20 00:00:00", + "targetClassifierId": "str", + "targetClassifierLocation": "str", + "targetResourceId": "str", + "targetResourceRegion": "str", + }, + ).result() # call '.result()' to poll until service return final result + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy + def test_get_classifier(self, documentintelligenceadministration_endpoint): + client = self.create_client(endpoint=documentintelligenceadministration_endpoint) + response = client.get_classifier( + classifier_id="str", + ) + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy + def test_list_classifiers(self, documentintelligenceadministration_endpoint): + client = self.create_client(endpoint=documentintelligenceadministration_endpoint) + response = client.list_classifiers() + result = [r for r in response] + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy + def test_delete_classifier(self, documentintelligenceadministration_endpoint): + client = self.create_client(endpoint=documentintelligenceadministration_endpoint) + response = client.delete_classifier( + classifier_id="str", + ) + + # please add some check logic here by yourself + # ... diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/test_document_intelligence_administration_async.py b/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/test_document_intelligence_administration_async.py new file mode 100644 index 000000000000..7b1980282a18 --- /dev/null +++ b/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/test_document_intelligence_administration_async.py @@ -0,0 +1,256 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) Python Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +import pytest +from devtools_testutils.aio import recorded_by_proxy_async +from testpreparer import DocumentIntelligenceAdministrationPreparer +from testpreparer_async import DocumentIntelligenceAdministrationClientTestBaseAsync + + +@pytest.mark.skip("you may need to update the auto-generated test case before run it") +class TestDocumentIntelligenceAdministrationAsync(DocumentIntelligenceAdministrationClientTestBaseAsync): + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy_async + async def test_begin_build_document_model(self, documentintelligenceadministration_endpoint): + client = self.create_async_client(endpoint=documentintelligenceadministration_endpoint) + response = await ( + await client.begin_build_document_model( + build_request={ + "buildMode": "str", + "modelId": "str", + "allowOverwrite": bool, + "azureBlobFileListSource": {"containerUrl": "str", "fileList": "str"}, + "azureBlobSource": {"containerUrl": "str", "prefix": "str"}, + "description": "str", + "maxTrainingHours": 0.0, + "tags": {"str": "str"}, + }, + ) + ).result() # call '.result()' to poll until service return final result + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy_async + async def test_begin_compose_model(self, documentintelligenceadministration_endpoint): + client = self.create_async_client(endpoint=documentintelligenceadministration_endpoint) + response = await ( + await client.begin_compose_model( + compose_request={ + "classifierId": "str", + "docTypes": { + "str": { + "buildMode": "str", + "confidenceThreshold": 0.0, + "description": "str", + "features": ["str"], + "fieldConfidence": {"str": 0.0}, + "fieldSchema": { + "str": { + "type": "str", + "description": "str", + "example": "str", + "items": ..., + "properties": {"str": ...}, + } + }, + "maxDocumentsToAnalyze": 0, + "modelId": "str", + "queryFields": ["str"], + } + }, + "modelId": "str", + "description": "str", + "split": "str", + "tags": {"str": "str"}, + }, + ) + ).result() # call '.result()' to poll until service return final result + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy_async + async def test_authorize_model_copy(self, documentintelligenceadministration_endpoint): + client = self.create_async_client(endpoint=documentintelligenceadministration_endpoint) + response = await client.authorize_model_copy( + authorize_copy_request={"modelId": "str", "description": "str", "tags": {"str": "str"}}, + ) + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy_async + async def test_begin_copy_model_to(self, documentintelligenceadministration_endpoint): + client = self.create_async_client(endpoint=documentintelligenceadministration_endpoint) + response = await ( + await client.begin_copy_model_to( + model_id="str", + copy_to_request={ + "accessToken": "str", + "expirationDateTime": "2020-02-20 00:00:00", + "targetModelId": "str", + "targetModelLocation": "str", + "targetResourceId": "str", + "targetResourceRegion": "str", + }, + ) + ).result() # call '.result()' to poll until service return final result + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy_async + async def test_get_model(self, documentintelligenceadministration_endpoint): + client = self.create_async_client(endpoint=documentintelligenceadministration_endpoint) + response = await client.get_model( + model_id="str", + ) + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy_async + async def test_list_models(self, documentintelligenceadministration_endpoint): + client = self.create_async_client(endpoint=documentintelligenceadministration_endpoint) + response = client.list_models() + result = [r async for r in response] + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy_async + async def test_delete_model(self, documentintelligenceadministration_endpoint): + client = self.create_async_client(endpoint=documentintelligenceadministration_endpoint) + response = await client.delete_model( + model_id="str", + ) + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy_async + async def test_get_resource_info(self, documentintelligenceadministration_endpoint): + client = self.create_async_client(endpoint=documentintelligenceadministration_endpoint) + response = await client.get_resource_info() + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy_async + async def test_get_operation(self, documentintelligenceadministration_endpoint): + client = self.create_async_client(endpoint=documentintelligenceadministration_endpoint) + response = await client.get_operation( + operation_id="str", + ) + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy_async + async def test_list_operations(self, documentintelligenceadministration_endpoint): + client = self.create_async_client(endpoint=documentintelligenceadministration_endpoint) + response = client.list_operations() + result = [r async for r in response] + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy_async + async def test_begin_build_classifier(self, documentintelligenceadministration_endpoint): + client = self.create_async_client(endpoint=documentintelligenceadministration_endpoint) + response = await ( + await client.begin_build_classifier( + build_request={ + "classifierId": "str", + "docTypes": { + "str": { + "azureBlobFileListSource": {"containerUrl": "str", "fileList": "str"}, + "azureBlobSource": {"containerUrl": "str", "prefix": "str"}, + "sourceKind": "str", + } + }, + "allowOverwrite": bool, + "baseClassifierId": "str", + "description": "str", + }, + ) + ).result() # call '.result()' to poll until service return final result + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy_async + async def test_authorize_classifier_copy(self, documentintelligenceadministration_endpoint): + client = self.create_async_client(endpoint=documentintelligenceadministration_endpoint) + response = await client.authorize_classifier_copy( + authorize_copy_request={"classifierId": "str", "description": "str", "tags": {"str": "str"}}, + ) + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy_async + async def test_begin_copy_classifier_to(self, documentintelligenceadministration_endpoint): + client = self.create_async_client(endpoint=documentintelligenceadministration_endpoint) + response = await ( + await client.begin_copy_classifier_to( + classifier_id="str", + copy_to_request={ + "accessToken": "str", + "expirationDateTime": "2020-02-20 00:00:00", + "targetClassifierId": "str", + "targetClassifierLocation": "str", + "targetResourceId": "str", + "targetResourceRegion": "str", + }, + ) + ).result() # call '.result()' to poll until service return final result + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy_async + async def test_get_classifier(self, documentintelligenceadministration_endpoint): + client = self.create_async_client(endpoint=documentintelligenceadministration_endpoint) + response = await client.get_classifier( + classifier_id="str", + ) + + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy_async + async def test_list_classifiers(self, documentintelligenceadministration_endpoint): + client = self.create_async_client(endpoint=documentintelligenceadministration_endpoint) + response = client.list_classifiers() + result = [r async for r in response] + # please add some check logic here by yourself + # ... + + @DocumentIntelligenceAdministrationPreparer() + @recorded_by_proxy_async + async def test_delete_classifier(self, documentintelligenceadministration_endpoint): + client = self.create_async_client(endpoint=documentintelligenceadministration_endpoint) + response = await client.delete_classifier( + classifier_id="str", + ) + + # please add some check logic here by yourself + # ... diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/test_document_intelligence_async.py b/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/test_document_intelligence_async.py new file mode 100644 index 000000000000..e7fd894224fb --- /dev/null +++ b/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/test_document_intelligence_async.py @@ -0,0 +1,79 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) Python Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +import pytest +from devtools_testutils.aio import recorded_by_proxy_async +from testpreparer import DocumentIntelligencePreparer +from testpreparer_async import DocumentIntelligenceClientTestBaseAsync + + +@pytest.mark.skip("you may need to update the auto-generated test case before run it") +class TestDocumentIntelligenceAsync(DocumentIntelligenceClientTestBaseAsync): + @DocumentIntelligencePreparer() + @recorded_by_proxy_async + async def test_begin_analyze_document(self, documentintelligence_endpoint): + client = self.create_async_client(endpoint=documentintelligence_endpoint) + response = await ( + await client.begin_analyze_document( + model_id="str", + ) + ).result() # call '.result()' to poll until service return final result + + # please add some check logic here by yourself + # ... + + @DocumentIntelligencePreparer() + @recorded_by_proxy_async + async def test_begin_analyze_batch_documents(self, documentintelligence_endpoint): + client = self.create_async_client(endpoint=documentintelligence_endpoint) + response = await ( + await client.begin_analyze_batch_documents( + model_id="str", + ) + ).result() # call '.result()' to poll until service return final result + + # please add some check logic here by yourself + # ... + + @DocumentIntelligencePreparer() + @recorded_by_proxy_async + async def test_get_analyze_result_pdf(self, documentintelligence_endpoint): + client = self.create_async_client(endpoint=documentintelligence_endpoint) + response = await client.get_analyze_result_pdf( + model_id="str", + result_id="str", + ) + + # please add some check logic here by yourself + # ... + + @DocumentIntelligencePreparer() + @recorded_by_proxy_async + async def test_get_analyze_result_figure(self, documentintelligence_endpoint): + client = self.create_async_client(endpoint=documentintelligence_endpoint) + response = await client.get_analyze_result_figure( + model_id="str", + result_id="str", + figure_id="str", + ) + + # please add some check logic here by yourself + # ... + + @DocumentIntelligencePreparer() + @recorded_by_proxy_async + async def test_begin_classify_document(self, documentintelligence_endpoint): + client = self.create_async_client(endpoint=documentintelligence_endpoint) + response = await ( + await client.begin_classify_document( + classifier_id="str", + classify_request={"base64Source": bytes("bytes", encoding="utf-8"), "urlSource": "str"}, + ) + ).result() # call '.result()' to poll until service return final result + + # please add some check logic here by yourself + # ... diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/testpreparer.py b/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/testpreparer.py new file mode 100644 index 000000000000..ed3b18488bf5 --- /dev/null +++ b/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/testpreparer.py @@ -0,0 +1,46 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) Python Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from azure.ai.documentintelligence import DocumentIntelligenceAdministrationClient, DocumentIntelligenceClient +from devtools_testutils import AzureRecordedTestCase, PowerShellPreparer +import functools + + +class DocumentIntelligenceClientTestBase(AzureRecordedTestCase): + + def create_client(self, endpoint): + credential = self.get_credential(DocumentIntelligenceClient) + return self.create_client_from_credential( + DocumentIntelligenceClient, + credential=credential, + endpoint=endpoint, + ) + + +DocumentIntelligencePreparer = functools.partial( + PowerShellPreparer, + "documentintelligence", + documentintelligence_endpoint="https://fake_documentintelligence_endpoint.com", +) + + +class DocumentIntelligenceAdministrationClientTestBase(AzureRecordedTestCase): + + def create_client(self, endpoint): + credential = self.get_credential(DocumentIntelligenceAdministrationClient) + return self.create_client_from_credential( + DocumentIntelligenceAdministrationClient, + credential=credential, + endpoint=endpoint, + ) + + +DocumentIntelligenceAdministrationPreparer = functools.partial( + PowerShellPreparer, + "documentintelligenceadministration", + documentintelligenceadministration_endpoint="https://fake_documentintelligenceadministration_endpoint.com", +) diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/testpreparer_async.py b/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/testpreparer_async.py new file mode 100644 index 000000000000..fece6c220e81 --- /dev/null +++ b/sdk/documentintelligence/azure-ai-documentintelligence/generated_tests/testpreparer_async.py @@ -0,0 +1,31 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) Python Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from azure.ai.documentintelligence.aio import DocumentIntelligenceAdministrationClient, DocumentIntelligenceClient +from devtools_testutils import AzureRecordedTestCase + + +class DocumentIntelligenceClientTestBaseAsync(AzureRecordedTestCase): + + def create_async_client(self, endpoint): + credential = self.get_credential(DocumentIntelligenceClient, is_async=True) + return self.create_client_from_credential( + DocumentIntelligenceClient, + credential=credential, + endpoint=endpoint, + ) + + +class DocumentIntelligenceAdministrationClientTestBaseAsync(AzureRecordedTestCase): + + def create_async_client(self, endpoint): + credential = self.get_credential(DocumentIntelligenceAdministrationClient, is_async=True) + return self.create_client_from_credential( + DocumentIntelligenceAdministrationClient, + credential=credential, + endpoint=endpoint, + ) diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/sdk_packaging.toml b/sdk/documentintelligence/azure-ai-documentintelligence/sdk_packaging.toml new file mode 100644 index 000000000000..e7687fdae93b --- /dev/null +++ b/sdk/documentintelligence/azure-ai-documentintelligence/sdk_packaging.toml @@ -0,0 +1,2 @@ +[packaging] +auto_update = false \ No newline at end of file diff --git a/sdk/documentintelligence/azure-ai-documentintelligence/tsp-location.yaml b/sdk/documentintelligence/azure-ai-documentintelligence/tsp-location.yaml index 18b1c4b0e7f4..c47675f59934 100644 --- a/sdk/documentintelligence/azure-ai-documentintelligence/tsp-location.yaml +++ b/sdk/documentintelligence/azure-ai-documentintelligence/tsp-location.yaml @@ -1,4 +1,4 @@ directory: specification/ai/DocumentIntelligence -commit: ec2a81edaecf3970e5938936e8256759905163e6 -additionalDirectories: [] -repo: Azure/azure-rest-api-specs +commit: e6ae33c2dc2c450ddd1147342b048a4ccd49323e +repo: test-repo-billy/azure-rest-api-specs +additionalDirectories: