@@ -39,7 +39,7 @@ def __init__(self,
3939 # set these params
4040 self ._road_ids = kwargs .pop ("road_ids" , None )
4141 self ._lane_corridor_id = kwargs .pop ("lane_corridor_id" , None )
42- self ._s_min = kwargs .pop ("s_min" , 0. )
42+ self ._s_min = kwargs .pop ("s_min" , 0. )
4343 self ._s_max = kwargs .pop ("s_max" , 60. )
4444 self ._ds_min = kwargs .pop ("ds_min" , 10. )
4545 self ._ds_max = kwargs .pop ("ds_max" , 20. )
@@ -69,13 +69,13 @@ def InferRoadIdsAndLaneCorr(self, world):
6969 self ._road_ids = self ._road_corridor .road_ids
7070 self ._lane_corridor = self ._road_corridor .GetCurrentLaneCorridor (
7171 start_point )
72-
72+
7373 def state (self , world ):
7474 """Returns a state of the agent
75-
75+
7676 Arguments:
7777 world {bark.core.world}
78-
78+
7979 Returns:
8080 np.array -- time, x, y, theta, velocity
8181 """
@@ -87,26 +87,26 @@ def state(self, world):
8787
8888 def ds (self ):
8989 """Increment for placing the agents
90-
90+
9191 Keyword Arguments:
9292 s_min {double} -- Min. lon. distance (default: {5.})
9393 s_max {double} -- Max. lon. distance (default: {10.})
94-
94+
9595 Returns:
9696 double -- delta s-value
9797 """
9898 return np .random .uniform (self ._ds_min , self ._ds_max )
9999
100100 def position (self , world ):
101101 """Using the defined LaneCorridor it finds positions for the agents
102-
102+
103103 Arguments:
104104 world {bark.core.world} -- BARK world
105-
105+
106106 Keyword Arguments:
107107 min_s {double} -- Min. lon. value (default: {0.})
108108 max_s {double} -- Max. lon. value (default: {100.})
109-
109+
110110 Returns:
111111 tuple -- (x, y, theta)
112112 """
@@ -185,18 +185,18 @@ def controlled_ids(self, agent_list):
185185
186186 def controlled_goal (self , world ):
187187 """Goal for the controlled agent
188-
188+
189189 Arguments:
190190 world {bark.core.world} -- BARK world
191-
191+
192192 Returns:
193193 GoalDefinition -- Goal for the controlled agent
194194 """
195195 return self .goal (world )
196196
197197 def controlled_behavior_model (self , world ):
198198 """Behavior model for controlled agent
199-
199+
200200 Returns:
201201 BehaviorModel -- BARK behavior model
202202 """
@@ -219,10 +219,11 @@ def __init__(self,
219219 params = None ,
220220 random_seed = None ,
221221 lane_corridor_configs = None ,
222- observer_model = None ):
222+ observer_model = None ,
223+ map_interface = None ):
223224 self ._map_file_name = map_file_name
224225 self ._lane_corridor_configs = lane_corridor_configs or []
225- self ._map_interface = None
226+ self ._map_interface = map_interface or None
226227 self ._observer_model = observer_model
227228 super (ConfigWithEase , self ).__init__ (params , num_scenarios )
228229 self .initialize_params (params )
@@ -238,7 +239,7 @@ def create_scenarios(self, params, num_scenarios):
238239
239240 def create_single_scenario (self ):
240241 """Creates one scenario using the defined LaneCorridorConfig
241-
242+
242243 Returns:
243244 Scenario -- Returns a BARK scenario
244245 """
@@ -272,10 +273,10 @@ def create_single_scenario(self):
272273 agent_params = self ._params .AddChild ("agent" )
273274 agent_goal = lc_config .goal (world )
274275 new_agent = Agent (
275- agent_state ,
276- agent_behavior ,
276+ agent_state ,
277+ agent_behavior ,
277278 agent_dyn ,
278- agent_exec ,
279+ agent_exec ,
279280 agent_polygon ,
280281 agent_params ,
281282 agent_goal ,
0 commit comments