|
| 1 | +import jax.numpy as np |
| 2 | + |
| 3 | + |
| 4 | +def theta2pseudo(theta: np.ndarray) -> np.ndarray: |
| 5 | + m = theta[0] |
| 6 | + h = theta[1:4] |
| 7 | + I_xx, I_xy, I_yy, I_xz, I_yz, I_zz = theta[4:] |
| 8 | + |
| 9 | + I_bar = np.array([[I_xx, I_xy, I_xz], [I_xy, I_yy, I_yz], [I_xz, I_yz, I_zz]]) |
| 10 | + |
| 11 | + Sigma = 0.5 * np.trace(I_bar) * np.eye(3) - I_bar |
| 12 | + |
| 13 | + pseudo_inertia = np.zeros((4, 4)) |
| 14 | + pseudo_inertia = pseudo_inertia.at[:3, :3].set(Sigma) |
| 15 | + pseudo_inertia = pseudo_inertia.at[:3, 3].set(h) |
| 16 | + pseudo_inertia = pseudo_inertia.at[3, :3].set(h) |
| 17 | + pseudo_inertia = pseudo_inertia.at[3, 3].set(m) |
| 18 | + |
| 19 | + return pseudo_inertia |
| 20 | + |
| 21 | + |
| 22 | +def pseudo2theta(pseudo_inertia: np.ndarray) -> np.ndarray: |
| 23 | + m = pseudo_inertia[3, 3] |
| 24 | + h = pseudo_inertia[:3, 3] |
| 25 | + Sigma = pseudo_inertia[:3, :3] |
| 26 | + |
| 27 | + I_bar = np.trace(Sigma) * np.eye(3) - Sigma |
| 28 | + |
| 29 | + I_xx = I_bar[0, 0] |
| 30 | + I_xy = I_bar[0, 1] |
| 31 | + I_yy = I_bar[1, 1] |
| 32 | + I_xz = I_bar[0, 2] |
| 33 | + I_yz = I_bar[1, 2] |
| 34 | + I_zz = I_bar[2, 2] |
| 35 | + |
| 36 | + theta = np.array([m, h[0], h[1], h[2], I_xx, I_xy, I_yy, I_xz, I_yz, I_zz]) |
| 37 | + |
| 38 | + return theta |
| 39 | + |
| 40 | + |
| 41 | +def logchol2chol(log_cholesky): |
| 42 | + alpha, d1, d2, d3, s12, s23, s13, t1, t2, t3 = log_cholesky |
| 43 | + |
| 44 | + exp_alpha = np.exp(alpha) |
| 45 | + exp_d1 = np.exp(d1) |
| 46 | + exp_d2 = np.exp(d2) |
| 47 | + exp_d3 = np.exp(d3) |
| 48 | + |
| 49 | + U = np.zeros((4, 4)) |
| 50 | + U = U.at[0, 0].set(exp_d1) |
| 51 | + U = U.at[0, 1].set(s12) |
| 52 | + U = U.at[0, 2].set(s13) |
| 53 | + U = U.at[0, 3].set(t1) |
| 54 | + U = U.at[1, 1].set(exp_d2) |
| 55 | + U = U.at[1, 2].set(s23) |
| 56 | + U = U.at[1, 3].set(t2) |
| 57 | + U = U.at[2, 2].set(exp_d3) |
| 58 | + U = U.at[2, 3].set(t3) |
| 59 | + U = U.at[3, 3].set(1) |
| 60 | + |
| 61 | + U *= exp_alpha |
| 62 | + |
| 63 | + return U |
| 64 | + |
| 65 | + |
| 66 | +def chol2logchol(U: np.ndarray) -> np.ndarray: |
| 67 | + alpha = np.log(U[3, 3]) |
| 68 | + d1 = np.log(U[0, 0] / U[3, 3]) |
| 69 | + d2 = np.log(U[1, 1] / U[3, 3]) |
| 70 | + d3 = np.log(U[2, 2] / U[3, 3]) |
| 71 | + s12 = U[0, 1] / U[3, 3] |
| 72 | + s23 = U[1, 2] / U[3, 3] |
| 73 | + s13 = U[0, 2] / U[3, 3] |
| 74 | + t1 = U[0, 3] / U[3, 3] |
| 75 | + t2 = U[1, 3] / U[3, 3] |
| 76 | + t3 = U[2, 3] / U[3, 3] |
| 77 | + return np.array([alpha, d1, d2, d3, s12, s23, s13, t1, t2, t3]) |
| 78 | + |
| 79 | + |
| 80 | +def logchol2theta(log_cholesky: np.ndarray) -> np.ndarray: |
| 81 | + alpha, d1, d2, d3, s12, s23, s13, t1, t2, t3 = log_cholesky |
| 82 | + |
| 83 | + exp_d1 = np.exp(d1) |
| 84 | + exp_d2 = np.exp(d2) |
| 85 | + exp_d3 = np.exp(d3) |
| 86 | + |
| 87 | + theta = np.array( |
| 88 | + [ |
| 89 | + 1, |
| 90 | + t1, |
| 91 | + t2, |
| 92 | + t3, |
| 93 | + s23**2 + t2**2 + t3**2 + exp_d2**2 + exp_d3**2, |
| 94 | + -s12 * exp_d2 - s13 * s23 - t1 * t2, |
| 95 | + s12**2 + s13**2 + t1**2 + t3**2 + exp_d1**2 + exp_d3**2, |
| 96 | + -s13 * exp_d3 - t1 * t3, |
| 97 | + -s23 * exp_d3 - t2 * t3, |
| 98 | + s12**2 + s13**2 + s23**2 + t1**2 + t2**2 + exp_d1**2 + exp_d2**2, |
| 99 | + ] |
| 100 | + ) |
| 101 | + |
| 102 | + exp_2_alpha = np.exp(2 * alpha) |
| 103 | + theta *= exp_2_alpha |
| 104 | + |
| 105 | + return theta |
| 106 | + |
| 107 | + |
| 108 | +def pseudo2cholesky(pseudo_inertia: np.ndarray) -> np.ndarray: |
| 109 | + n = pseudo_inertia.shape[0] |
| 110 | + indices = np.arange(n - 1, -1, -1) |
| 111 | + |
| 112 | + reversed_inertia = pseudo_inertia[indices][:, indices] |
| 113 | + |
| 114 | + L_prime = np.linalg.cholesky(reversed_inertia) |
| 115 | + |
| 116 | + U = L_prime[indices][:, indices] |
| 117 | + |
| 118 | + return U |
| 119 | + |
| 120 | + |
| 121 | +def cholesky2pseudo(U: np.ndarray) -> np.ndarray: |
| 122 | + return U @ U.T |
| 123 | + |
| 124 | + |
| 125 | +def pseudo2logchol(pseudo_inertia: np.ndarray) -> np.ndarray: |
| 126 | + U = pseudo2cholesky(pseudo_inertia) |
| 127 | + logchol = chol2logchol(U) |
| 128 | + return logchol |
| 129 | + |
| 130 | + |
| 131 | +def theta2logchol(theta: np.ndarray) -> np.ndarray: |
| 132 | + pseudo_inertia = theta2pseudo(theta) |
| 133 | + return pseudo2logchol(pseudo_inertia) |
0 commit comments