|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [ |
| 8 | + { |
| 9 | + "name": "stderr", |
| 10 | + "output_type": "stream", |
| 11 | + "text": [ |
| 12 | + "2024-06-29 16:09:01.637386: W external/xla/xla/service/gpu/nvptx_compiler.cc:765] The NVIDIA driver's CUDA version is 12.3 which is older than the ptxas CUDA version (12.5.40). Because the driver is older than the ptxas version, XLA is disabling parallel compilation, which may slow down compilation. You should update your NVIDIA driver or use the NVIDIA-provided CUDA forward compatibility packages.\n" |
| 13 | + ] |
| 14 | + } |
| 15 | + ], |
| 16 | + "source": [ |
| 17 | + "import jax\n", |
| 18 | + "import jax.numpy as jnp\n", |
| 19 | + "import mujoco\n", |
| 20 | + "import numpy as np\n", |
| 21 | + "from mujoco import mjx\n", |
| 22 | + "from robot_descriptions.z1_mj_description import MJCF_PATH\n", |
| 23 | + "\n", |
| 24 | + "key = jax.random.PRNGKey(0)\n", |
| 25 | + "\n", |
| 26 | + "mjmodel = mujoco.MjModel.from_xml_path(MJCF_PATH)\n", |
| 27 | + "mjdata = mujoco.MjData(mjmodel)\n", |
| 28 | + "\n", |
| 29 | + "# alter the model so it becomes mjx compatible\n", |
| 30 | + "mjmodel.dof_frictionloss = 0\n", |
| 31 | + "mjmodel.opt.integrator = 0\n", |
| 32 | + "\n", |
| 33 | + "mjxmodel = mjx.put_model(mjmodel)\n", |
| 34 | + "mjxdata = mjx.put_data(mjmodel, mjdata)" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "code", |
| 39 | + "execution_count": 2, |
| 40 | + "metadata": {}, |
| 41 | + "outputs": [ |
| 42 | + { |
| 43 | + "data": { |
| 44 | + "text/plain": [ |
| 45 | + "'/home/leo/.cache/robot_descriptions/mujoco_menagerie/unitree_z1/z1.xml'" |
| 46 | + ] |
| 47 | + }, |
| 48 | + "execution_count": 2, |
| 49 | + "metadata": {}, |
| 50 | + "output_type": "execute_result" |
| 51 | + } |
| 52 | + ], |
| 53 | + "source": [ |
| 54 | + "MJCF_PATH" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": 3, |
| 60 | + "metadata": {}, |
| 61 | + "outputs": [ |
| 62 | + { |
| 63 | + "data": { |
| 64 | + "text/plain": [ |
| 65 | + "(Array([ 1.1901639 , -1.0996888 , 0.44367844, 0.5984697 , -0.39189556,\n", |
| 66 | + " 0.69261974], dtype=float32),\n", |
| 67 | + " Array([ 0.46018356, -2.068578 , -0.21438177, -0.9898306 , -0.6789304 ,\n", |
| 68 | + " 0.27362573], dtype=float32))" |
| 69 | + ] |
| 70 | + }, |
| 71 | + "execution_count": 3, |
| 72 | + "metadata": {}, |
| 73 | + "output_type": "execute_result" |
| 74 | + } |
| 75 | + ], |
| 76 | + "source": [ |
| 77 | + "q, v = jax.random.normal(key, (2, mjmodel.nq))\n", |
| 78 | + "\n", |
| 79 | + "q, v" |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "code", |
| 84 | + "execution_count": 4, |
| 85 | + "metadata": {}, |
| 86 | + "outputs": [ |
| 87 | + { |
| 88 | + "name": "stdout", |
| 89 | + "output_type": "stream", |
| 90 | + "text": [ |
| 91 | + "bodyid: 2, v: [0. 0. 0.], w: [0. 0. 0.46018356]\n", |
| 92 | + "bodyid: 3, v: [-3.09150672e-18 0.00000000e+00 -1.57468993e-18], w: [ 0.41005399 -2.068578 0.20886511]\n", |
| 93 | + "bodyid: 4, v: [ 0.31078859 -0.07310279 -0.6539035 ], w: [ 0.28069364 -2.28295977 0.36466421]\n", |
| 94 | + "bodyid: 5, v: [ 0.23727103 -0.00960553 -0.02728739], w: [ 0.02646465 -3.27279039 0.45942195]\n", |
| 95 | + "bodyid: 6, v: [0.21066843 0.11146764 0.20180794], w: [ 1.27447096 -3.0145615 -0.21950845]\n", |
| 96 | + "bodyid: 7, v: [0.21066843 0.30104535 0.20516525], w: [ 1.5480967 -2.46010192 1.75603632]\n" |
| 97 | + ] |
| 98 | + } |
| 99 | + ], |
| 100 | + "source": [ |
| 101 | + "mjdata.qpos[:] = q\n", |
| 102 | + "mjdata.qvel[:] = v\n", |
| 103 | + "\n", |
| 104 | + "mujoco.mj_step(mjmodel, mjdata)\n", |
| 105 | + "\n", |
| 106 | + "velocity = np.zeros(6)\n", |
| 107 | + "for bodyid in mjmodel.jnt_bodyid:\n", |
| 108 | + " mujoco.mj_objectVelocity(mjmodel, mjdata, 2, bodyid, velocity, 1)\n", |
| 109 | + "\n", |
| 110 | + " print(f\"bodyid: {bodyid}, v: {velocity[3:]}, w: {velocity[:3]}\")" |
| 111 | + ] |
| 112 | + }, |
| 113 | + { |
| 114 | + "cell_type": "code", |
| 115 | + "execution_count": 5, |
| 116 | + "metadata": {}, |
| 117 | + "outputs": [ |
| 118 | + { |
| 119 | + "name": "stdout", |
| 120 | + "output_type": "stream", |
| 121 | + "text": [ |
| 122 | + "[[ 0. 0. 0. 0. 0. 0. ]\n", |
| 123 | + " [ 0. 0. 0. 0. 0. 0. ]\n", |
| 124 | + " [ 0. 0. 0.4602 0.0068 -0.0015 0. ]\n", |
| 125 | + " [ 1.9205 -0.7685 0.4602 0.0957 0.2207 -0.0307]\n", |
| 126 | + " [ 2.1196 -0.8481 0.4602 0.08 0.1816 0.0002]\n", |
| 127 | + " [ 3.0386 -1.2159 0.4602 0.0734 0.1651 0.0061]\n", |
| 128 | + " [ 3.0531 -1.1796 -0.2176 0.0331 0.1794 0.006 ]\n", |
| 129 | + " [ 3.2439 -0.984 -0.2031 0.0367 0.1764 -0.0013]]\n" |
| 130 | + ] |
| 131 | + } |
| 132 | + ], |
| 133 | + "source": [ |
| 134 | + "with np.printoptions(precision=4, suppress=True):\n", |
| 135 | + " print(mjdata.cvel)" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "code", |
| 140 | + "execution_count": 6, |
| 141 | + "metadata": {}, |
| 142 | + "outputs": [], |
| 143 | + "source": [ |
| 144 | + "from mujoco_sysid.mjx.regressors import object_velocity\n", |
| 145 | + "\n", |
| 146 | + "mjxdata = mjxdata.replace(qpos=q, qvel=v)\n", |
| 147 | + "mjxdata = mjx.step(mjxmodel, mjxdata)" |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "code", |
| 152 | + "execution_count": 7, |
| 153 | + "metadata": {}, |
| 154 | + "outputs": [ |
| 155 | + { |
| 156 | + "name": "stdout", |
| 157 | + "output_type": "stream", |
| 158 | + "text": [ |
| 159 | + "[[ 0. 0. 0. 0. 0. 0. ]\n", |
| 160 | + " [ 0. 0. 0. 0. 0. 0. ]\n", |
| 161 | + " [ 0. 0. 0.4602 0.0068 -0.0015 0. ]\n", |
| 162 | + " [ 1.9205 -0.7685 0.4602 0.0957 0.2207 -0.0307]\n", |
| 163 | + " [ 2.1196 -0.8481 0.4602 0.08 0.1816 0.0002]\n", |
| 164 | + " [ 3.0386 -1.2159 0.4602 0.0734 0.1651 0.0061]\n", |
| 165 | + " [ 3.0531 -1.1796 -0.2176 0.0331 0.1794 0.006 ]\n", |
| 166 | + " [ 3.2439 -0.984 -0.2031 0.0367 0.1764 -0.0013]]\n" |
| 167 | + ] |
| 168 | + } |
| 169 | + ], |
| 170 | + "source": [ |
| 171 | + "with np.printoptions(precision=4, suppress=True):\n", |
| 172 | + " print(mjxdata.cvel)" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "code", |
| 177 | + "execution_count": 8, |
| 178 | + "metadata": {}, |
| 179 | + "outputs": [ |
| 180 | + { |
| 181 | + "name": "stdout", |
| 182 | + "output_type": "stream", |
| 183 | + "text": [ |
| 184 | + "bodyid: 2, v: [0. 0. 0.], w: [0. 0. 0.46018356]\n", |
| 185 | + "bodyid: 3, v: [0. 0. 0.], w: [ 0.41005418 -2.0685785 0.20886509]\n", |
| 186 | + "bodyid: 4, v: [ 0.31078863 -0.07310276 -0.6539037 ], w: [ 0.28069377 -2.2829604 0.36466417]\n", |
| 187 | + "bodyid: 5, v: [ 0.2372711 -0.00960554 -0.02728742], w: [ 0.02646467 -3.2727916 0.45942217]\n", |
| 188 | + "bodyid: 6, v: [0.21066852 0.1114677 0.20180808], w: [ 1.2744716 -3.0145626 -0.21950865]\n", |
| 189 | + "bodyid: 7, v: [0.21066849 0.30104554 0.20516539], w: [ 1.5480974 -2.4601028 1.7560369]\n" |
| 190 | + ] |
| 191 | + } |
| 192 | + ], |
| 193 | + "source": [ |
| 194 | + "for bodyid in mjmodel.jnt_bodyid:\n", |
| 195 | + " velocity = object_velocity(mjxmodel, mjxdata, bodyid)\n", |
| 196 | + "\n", |
| 197 | + " print(f\"bodyid: {bodyid}, v: {velocity[3:]}, w: {velocity[:3]}\")" |
| 198 | + ] |
| 199 | + } |
| 200 | + ], |
| 201 | + "metadata": { |
| 202 | + "kernelspec": { |
| 203 | + "display_name": "venv", |
| 204 | + "language": "python", |
| 205 | + "name": "python3" |
| 206 | + }, |
| 207 | + "language_info": { |
| 208 | + "codemirror_mode": { |
| 209 | + "name": "ipython", |
| 210 | + "version": 3 |
| 211 | + }, |
| 212 | + "file_extension": ".py", |
| 213 | + "mimetype": "text/x-python", |
| 214 | + "name": "python", |
| 215 | + "nbconvert_exporter": "python", |
| 216 | + "pygments_lexer": "ipython3", |
| 217 | + "version": "3.10.12" |
| 218 | + } |
| 219 | + }, |
| 220 | + "nbformat": 4, |
| 221 | + "nbformat_minor": 2 |
| 222 | +} |
0 commit comments