@@ -364,11 +364,11 @@ def summary(self) -> Summary:
364364 smry .tables .append (table )
365365
366366 param_data = c_ [
367- self .params .values [:, None ],
368- self .std_errors .values [:, None ],
369- self .tstats .values [:, None ],
370- self .pvalues .values [:, None ],
371- self .conf_int (),
367+ self .params .to_numpy () [:, None ],
368+ self .std_errors .to_numpy () [:, None ],
369+ self .tstats .to_numpy () [:, None ],
370+ self .pvalues .to_numpy () [:, None ],
371+ self .conf_int (). to_numpy () ,
372372 ]
373373 data = []
374374 for row in param_data :
@@ -722,11 +722,11 @@ def diagnostics(self) -> DataFrame:
722722 for col in endog .pandas :
723723 # TODO: BUG in pandas-stube
724724 # https://github.com/pandas-dev/pandas-stubs/issues/97
725- y = w * endog .pandas [[col ]].values
725+ y = w * endog .pandas [[col ]].to_numpy ()
726726 ey = annihilate (y , x )
727727 partial = _OLS (ey , ez ).fit (cov_type = self ._cov_type , ** self ._cov_config )
728728 full = individual_results [str (col )]
729- params = full .params .values [- nz :]
729+ params = full .params .to_numpy () [- nz :]
730730 params = params [:, None ]
731731 c = asarray (full .cov )[- nz :, - nz :]
732732 stat = params .T @ inv (c ) @ params
@@ -845,7 +845,7 @@ def summary(self) -> Summary:
845845 params = []
846846 for var in header :
847847 res = self .individual [var ]
848- v = c_ [res .params .values , res .tstats .values ]
848+ v = c_ [res .params .to_numpy () , res .tstats .to_numpy () ]
849849 params .append (v .ravel ())
850850 params_arr = array (params )
851851 params_fmt = [[_str (val ) for val in row ] for row in params_arr .T ]
@@ -970,7 +970,7 @@ def sargan(self) -> InvalidTestStatistic | WaldTestStatistic:
970970 name = name ,
971971 )
972972
973- eps = self .resids .values [:, None ]
973+ eps = self .resids .to_numpy () [:, None ]
974974 u = annihilate (eps , self .model ._z )
975975 stat = nobs * (1 - (u .T @ u ) / (eps .T @ eps )).squeeze ()
976976 null = "The model is not overidentified."
@@ -1033,17 +1033,17 @@ def _endogeneity_setup(
10331033 raise TypeError ("variables must be a str or a list of str." )
10341034
10351035 nobs = self .model .dependent .shape [0 ]
1036- e2 = asarray (self .resids .values )
1036+ e2 = asarray (self .resids .to_numpy () )
10371037 nendog , nexog = self .model .endog .shape [1 ], self .model .exog .shape [1 ]
10381038 if variables is None :
10391039 assumed_exog = self .model .endog .ndarray
10401040 aug_exog = c_ [self .model .exog .ndarray , assumed_exog ]
10411041 still_endog = empty ((nobs , 0 ))
10421042 else :
10431043 assert isinstance (variables , list )
1044- assumed_exog = self .model .endog .pandas [variables ].values
1044+ assumed_exog = self .model .endog .pandas [variables ].to_numpy ()
10451045 ex = [c for c in self .model .endog .cols if c not in variables ]
1046- still_endog = self .model .endog .pandas [ex ].values
1046+ still_endog = self .model .endog .pandas [ex ].to_numpy ()
10471047 aug_exog = c_ [self .model .exog .ndarray , assumed_exog ]
10481048 ntested = assumed_exog .shape [1 ]
10491049
@@ -1052,7 +1052,7 @@ def _endogeneity_setup(
10521052 mod = IV2SLS (
10531053 self .model .dependent , aug_exog , still_endog , self .model .instruments
10541054 )
1055- e0 = mod .fit ().resids .values [:, None ]
1055+ e0 = mod .fit ().resids .to_numpy () [:, None ]
10561056
10571057 z2 = c_ [self .model .exog .ndarray , self .model .instruments .ndarray ]
10581058 z1 = c_ [z2 , assumed_exog ]
@@ -1257,8 +1257,8 @@ def wooldridge_regression(self) -> WaldTestStatistic:
12571257 mod = _OLS (self .model .dependent , augx )
12581258 res = mod .fit (cov_type = self .cov_type , ** self .cov_config )
12591259 norig = self .model ._x .shape [1 ]
1260- test_params = asarray (res .params .values [norig :], dtype = float )
1261- test_cov = res .cov .values [norig :, norig :]
1260+ test_params = asarray (res .params .to_numpy () [norig :], dtype = float )
1261+ test_cov = res .cov .to_numpy () [norig :, norig :]
12621262 stat = test_params .T @ inv (test_cov ) @ test_params
12631263 df = len (test_params )
12641264 null = "Endogenous variables are exogenous"
@@ -1310,7 +1310,7 @@ def wooldridge_overid(self) -> InvalidTestStatistic | WaldTestStatistic:
13101310 endog_hat = proj (endog .ndarray , c_ [exog .ndarray , instruments .ndarray ])
13111311 q = instruments .ndarray [:, : (ninstr - nendog )]
13121312 q_res = annihilate (q , c_ [self .model .exog .ndarray , endog_hat ])
1313- test_functions = q_res * self .resids .values [:, None ]
1313+ test_functions = q_res * self .resids .to_numpy () [:, None ]
13141314 res = _OLS (ones ((nobs , 1 )), test_functions ).fit (cov_type = "unadjusted" )
13151315
13161316 stat = res .nobs * res .rsquared
@@ -1520,9 +1520,9 @@ def c_stat(self, variables: list[str] | str | None = None) -> WaldTestStatistic:
15201520 variable_lst = [variables ]
15211521 else :
15221522 raise TypeError ("variables must be a str or a list of str." )
1523- exog_e = c_ [exog .ndarray , endog .pandas [variable_lst ].values ]
1523+ exog_e = c_ [exog .ndarray , endog .pandas [variable_lst ].to_numpy () ]
15241524 ex = [c for c in endog .pandas if c not in variable_lst ]
1525- endog_e = endog .pandas [ex ].values
1525+ endog_e = endog .pandas [ex ].to_numpy ()
15261526 null = "Variables {} are exogenous" .format (", " .join (variable_lst ))
15271527 from linearmodels .iv .model import IVGMM , IVGMMCUE
15281528
@@ -1637,7 +1637,7 @@ def summary(self) -> Summary:
16371637 ],
16381638 axis = 1 ,
16391639 )
1640- vals_list = [[i for i in v ] for v in vals .T .values ]
1640+ vals_list = [[i for i in v ] for v in vals .T .to_numpy () ]
16411641 vals_list [2 ] = [str (v ) for v in vals_list [2 ]]
16421642 for i in range (4 , len (vals_list )):
16431643 vals_list [i ] = [_str (v ) for v in vals_list [i ]]
@@ -1650,11 +1650,11 @@ def summary(self) -> Summary:
16501650
16511651 for i in range (len (params )):
16521652 formatted_and_starred = []
1653- for v , pv in zip (params .values [i ], pvalues [i ]):
1653+ for v , pv in zip (params .to_numpy () [i ], pvalues [i ]):
16541654 formatted_and_starred .append (add_star (_str (v ), pv , self ._stars ))
16551655 params_fmt .append (formatted_and_starred )
16561656 precision_fmt = []
1657- for v in precision .values [i ]:
1657+ for v in precision .to_numpy () [i ]:
16581658 v_str = _str (v )
16591659 v_str = f"({ v_str } )" if v_str .strip () else v_str
16601660 precision_fmt .append (v_str )
0 commit comments