@@ -247,16 +247,13 @@ def apply(
247247
248248 Parameters
249249 ----------
250- forward: callable, no lambda
251- Function to transform the data in the forward pass.
252- For the adapter to be serializable, this function has to be serializable
253- as well (see Notes). Therefore, only proper functions and no lambda
254- functions should be used here.
255- inverse: callable, no lambda
256- Function to transform the data in the inverse pass.
257- For the adapter to be serializable, this function has to be serializable
258- as well (see Notes). Therefore, only proper functions and no lambda
259- functions should be used here.
250+ forward : str or np.ufunc
251+ The name of the NumPy function to use for the forward transformation.
252+ inverse : str or np.ufunc, optional
253+ The name of the NumPy function to use for the inverse transformation.
254+ By default, the inverse is inferred from the forward argument for supported methods.
255+ You can find the supported methods in
256+ :py:const:`~bayesflow.adapters.transforms.NumpyTransform.INVERSE_METHODS`.
260257 predicate : Predicate, optional
261258 Function that indicates which variables should be transformed.
262259 include : str or Sequence of str, optional
@@ -265,12 +262,6 @@ def apply(
265262 Names of variables to exclude from the transform.
266263 **kwargs : dict
267264 Additional keyword arguments passed to the transform.
268-
269- Notes
270- -----
271- Important: This is only serializable if the forward and inverse functions are serializable.
272- This most likely means you will have to pass the scope that the forward and inverse functions are contained in
273- to the `custom_objects` argument of the `deserialize` function when deserializing this class.
274265 """
275266 transform = FilterTransform (
276267 transform_constructor = NumpyTransform ,
0 commit comments