Skip to content

Commit 0728d3d

Browse files
committed
Merge branch 'Future' of https://github.com/stefanradev93/BayesFlow into Future
2 parents 2e1f237 + ff970ae commit 0728d3d

File tree

1 file changed

+22
-7
lines changed

1 file changed

+22
-7
lines changed

README.md

Lines changed: 22 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
# BayesFlow
22

3-
Welcome to our BayesFlow library for amortized simulation-based Bayesian inference.
3+
Welcome to our BayesFlow library for efficient simulation-based Bayesian workflows! Our library enables users to create specialized neural networks for *amortized Bayesian inference*, which repays users with rapid and fully Bayesian parameter estimation or model comparison after a simulation-based training phase.
44

5-
For starters, check out some or our walk-through notebooks:
5+
For starters, check out some of our walk-through notebooks:
66

77
1. [Basic amortized posterior estimation](docs/source/tutorial_notebooks/Intro_Amortized_Posterior_Estimation.ipynb)
88
2. [Intermediate posterior estimation](docs/source/tutorial_notebooks/Covid19_Initial_Posterior_Estimation.ipynb)
@@ -22,9 +22,9 @@ overview of neurally bootstrapped Bayesian inference.
2222

2323
<img src="img/high_level_framework.png" width=80% height=80%>
2424

25-
## Parameter Estimation
25+
## Getting Started: Parameter Estimation
2626

27-
The original BayesFlow approach for amortized parameter estimation is based on our paper:
27+
The core functionality of BayesFlow is amortized Bayesian posterior estimation, as described in our paper:
2828

2929
Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., & Köthe, U. (2020).
3030
BayesFlow: Learning complex stochastic models with invertible neural networks.
@@ -133,6 +133,12 @@ BayesFlow: Learning complex stochastic models with invertible neural networks.
133133
<em>IEEE Transactions on Neural Networks and Learning Systems</em>, available
134134
for free at: https://arxiv.org/abs/2003.06281.
135135

136+
- Radev, S. T., Graw, F., Chen, S., Mutters, N. T., Eichel, V. M., Bärnighausen, T., & Köthe, U. (2021).
137+
OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany. <em>PLoS computational biology</em>, 17(10), e1009472.
138+
139+
- von Krause, M., Radev, S. T., & Voss, A. (2022).
140+
Mental speed is high until age 60 as revealed by analysis of over a million participants.
141+
<em>Nature Human Behaviour</em>, 6(5), 700-708.
136142

137143
## Model Misspecification
138144

@@ -143,15 +149,24 @@ Gaussian and reliably detects model misspecification during inference time.
143149

144150
![](docs/source/images/model_misspecification_amortized_sbi.png?raw=true)
145151

152+
In order to use this method, you should only provide the `summary_loss_fun` argument
153+
to the `AmortizedPosterior` instance:
154+
155+
```python
156+
amortizer = bf.amortizers.AmortizedPosterior(inference_net, summary_net, summary_loss_fun='MMD')
157+
```
158+
159+
The amortizer knows how to combine its losses.
160+
146161
### References and Further Reading
147162

148163
- Schmitt, M., Bürkner P. C., Köthe U., & Radev S. T. (2022). Detecting Model
149164
Misspecification in Amortized Bayesian Inference with Neural Networks. <em>ArXiv
150-
preprint</em>.
165+
preprint</em>, available for free at: https://arxiv.org/abs/2112.08866
151166

152167
## Model Comparison
153168

154-
Coming soon...
169+
Example coming soon...
155170

156171
### References and Further Reading
157172

@@ -162,4 +177,4 @@ doi:10.1109/TNNLS.2021.3124052 available for free at: https://arxiv.org/abs/2004
162177

163178
## Likelihood emulation
164179

165-
Coming soon...
180+
Example coming soon...

0 commit comments

Comments
 (0)