@@ -62,7 +62,7 @@ def plot_recovery(
6262 https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html
6363
6464 Important: Posterior aggregates play no special role in Bayesian inference and should only
65- be used heuristically. For instanec , in the case of multi-modal posteriors, common point
65+ be used heuristically. For instance , in the case of multi-modal posteriors, common point
6666 estimates, such as mean, (geometric) median, or maximum a posteriori (MAP) mean nothing.
6767
6868 Parameters
@@ -95,7 +95,7 @@ def plot_recovery(
9595 add_r2 : bool, optional, default: True
9696 A flag for adding R^2 between true and estimates to the plot
9797 color : str, optional, default: '#8f2727'
98- The color for the true vs. estimated scatter points and errobars
98+ The color for the true vs. estimated scatter points and error bars
9999
100100 Returns
101101 -------
@@ -253,7 +253,7 @@ def plot_z_score_contraction(
253253 Toward a principled Bayesian workflow in cognitive science.
254254 Psychological methods, 26(1), 103.
255255
256- Also available at https://arxiv.org/abs/1904.12765
256+ Paper also available at https://arxiv.org/abs/1904.12765
257257
258258 Parameters
259259 ----------
@@ -272,7 +272,7 @@ def plot_z_score_contraction(
272272 tick_fontsize : int, optional, default: 12
273273 The font size of the axis ticklabels
274274 color : str, optional, default: '#8f2727'
275- The color for the true vs. estimated scatter points and errobars
275+ The color for the true vs. estimated scatter points and error bars
276276
277277 Returns
278278 -------
@@ -887,7 +887,7 @@ def plot_losses(
887887 lw = lw_val ,
888888 label = "Validation" ,
889889 )
890- # Schmuck
890+ # Schmuck
891891 ax .set_xlabel ("Training step #" , fontsize = label_fontsize )
892892 ax .set_ylabel ("Loss value" , fontsize = label_fontsize )
893893 sns .despine (ax = ax )
@@ -901,7 +901,7 @@ def plot_losses(
901901
902902
903903def plot_prior2d (prior , param_names = None , n_samples = 2000 , height = 2.5 , color = "#8f2727" , ** kwargs ):
904- """Creates pairplots for a given joint prior.
904+ """Creates pair-plots for a given joint prior.
905905
906906 Parameters
907907 ----------
@@ -913,7 +913,7 @@ def plot_prior2d(prior, param_names=None, n_samples=2000, height=2.5, color="#8f
913913 The number of random draws from the joint prior
914914 height : float, optional, default: 2.5
915915 The height of the pair plot
916- color : str, optional, defailt : '#8f2727'
916+ color : str, optional, default : '#8f2727'
917917 The color of the plot
918918 **kwargs : dict, optional
919919 Additional keyword arguments passed to the sns.PairGrid constructor
@@ -943,7 +943,9 @@ def plot_prior2d(prior, param_names=None, n_samples=2000, height=2.5, color="#8f
943943 # Generate plots
944944 g = sns .PairGrid (data_to_plot , height = height , ** kwargs )
945945 g .map_diag (sns .histplot , fill = True , color = color , alpha = 0.9 , kde = True )
946- # Kernel density estimation (KDE) may not always be possible (e.g. with parameters whose correlation is close to 1 or -1).
946+
947+ # Kernel density estimation (KDE) may not always be possible
948+ # (e.g. with parameters whose correlation is close to 1 or -1).
947949 # In this scenario, a scatter-plot is generated instead.
948950 try :
949951 g .map_lower (sns .kdeplot , fill = True , color = color , alpha = 0.9 )
@@ -962,7 +964,7 @@ def plot_prior2d(prior, param_names=None, n_samples=2000, height=2.5, color="#8f
962964
963965def plot_latent_space_2d (z_samples , height = 2.5 , color = "#8f2727" , ** kwargs ):
964966 """Creates pairplots for the latent space learned by the inference network. Enables
965- visual inspection of the the latent space and whether its structrue corresponds to the
967+ visual inspection of the latent space and whether its structure corresponds to the
966968 one enforced by the optimization criterion.
967969
968970 Parameters
@@ -971,7 +973,7 @@ def plot_latent_space_2d(z_samples, height=2.5, color="#8f2727", **kwargs):
971973 The latent samples computed through a forward pass of the inference network.
972974 height : float, optional, default: 2.5
973975 The height of the pair plot.
974- color : str, optional, defailt : '#8f2727'
976+ color : str, optional, default : '#8f2727'
975977 The color of the plot
976978 **kwargs : dict, optional
977979 Additional keyword arguments passed to the sns.PairGrid constructor
@@ -1235,32 +1237,31 @@ def plot_mmd_hypothesis_test(
12351237
12361238 Parameters
12371239 ----------
1238- mmd_null: np.ndarray
1239- samples from the MMD sampling distribution under the null hypothesis "the model is well-specified"
1240- mmd_observed: float
1241- observed MMD value
1242- alpha_level: float
1243- rejection probability (type I error)
1244- null_color: color
1245- color for the H0 sampling distribution
1246- observed_color: color
1247- color for the observed MMD
1248- alpha_color: color
1249- color for the rejection area
1240+ mmd_null : np.ndarray
1241+ The samples from the MMD sampling distribution under the null hypothesis "the model is well-specified"
1242+ mmd_observed : float
1243+ The observed MMD value
1244+ alpha_level : float
1245+ The rejection probability (type I error)
1246+ null_color : str or tuple
1247+ The color of the H0 sampling distribution
1248+ observed_color : str or tuple
1249+ The color of the observed MMD
1250+ alpha_color : str or tuple
1251+ The color of the rejection area
12501252 truncate_vlines_at_kde: bool
12511253 true: cut off the vlines at the kde
12521254 false: continue kde lines across the plot
1253- xmin: float
1254- lower x axis limit
1255- xmax: float
1256- upper x axis limit
1257- bw_factor: float, default: 1.5
1255+ xmin : float
1256+ The lower x- axis limit
1257+ xmax : float
1258+ The upper x- axis limit
1259+ bw_factor : float, optional , default: 1.5
12581260 bandwidth (aka. smoothing parameter) of the kernel density estimate
12591261
12601262 Returns
12611263 -------
12621264 f : plt.Figure - the figure instance for optional saving
1263-
12641265 """
12651266
12661267 def draw_vline_to_kde (x , kde_object , color , label = None , ** kwargs ):
0 commit comments