@@ -53,7 +53,7 @@ def plot_recovery(
5353 n_row = None ,
5454 xlabel = "Ground truth" ,
5555 ylabel = "Estimated" ,
56- ** kwargs
56+ ** kwargs ,
5757):
5858 """Creates and plots publication-ready recovery plot with true vs. point estimate + uncertainty.
5959 The point estimate can be controlled with the ``point_agg`` argument, and the uncertainty estimate
@@ -110,7 +110,7 @@ def plot_recovery(
110110 **kwargs : optional
111111 Additional keyword arguments passed to ax.errorbar or ax.scatter.
112112 Example: `rasterized=True` to reduce PDF file size with many dots
113-
113+
114114 Returns
115115 -------
116116 f : plt.Figure - the figure instance for optional saving
@@ -240,7 +240,7 @@ def plot_z_score_contraction(
240240 tick_fontsize = 12 ,
241241 color = "#8f2727" ,
242242 n_col = None ,
243- n_row = None
243+ n_row = None ,
244244):
245245 """Implements a graphical check for global model sensitivity by plotting the posterior
246246 z-score over the posterior contraction for each set of posterior samples in ``post_samples``
@@ -567,7 +567,7 @@ def plot_sbc_histograms(
567567 tick_fontsize = 12 ,
568568 hist_color = "#a34f4f" ,
569569 n_row = None ,
570- n_col = None
570+ n_col = None ,
571571):
572572 """Creates and plots publication-ready histograms of rank statistics for simulation-based calibration
573573 (SBC) checks according to [1].
@@ -929,7 +929,7 @@ def plot_losses(
929929 )
930930 # Schmuck
931931 ax .set_xlabel ("Training step #" , fontsize = label_fontsize )
932- ax .set_ylabel ("Loss value " , fontsize = label_fontsize )
932+ ax .set_ylabel ("Value " , fontsize = label_fontsize )
933933 sns .despine (ax = ax )
934934 ax .grid (alpha = grid_alpha )
935935 ax .set_title (train_losses .columns [i ], fontsize = title_fontsize )
@@ -1061,7 +1061,7 @@ def plot_calibration_curves(
10611061 fig_size = None ,
10621062 color = "#8f2727" ,
10631063 n_row = None ,
1064- n_col = None
1064+ n_col = None ,
10651065):
10661066 """Plots the calibration curves, the ECEs and the marginal histograms of predicted posterior model probabilities
10671067 for a model comparison problem. The marginal histograms inform about the fraction of predictions in each bin.
@@ -1114,7 +1114,6 @@ def plot_calibration_curves(
11141114 elif n_row is not None and n_col is None :
11151115 n_col = int (np .ceil (num_models / n_row ))
11161116
1117-
11181117 # Compute calibration
11191118 cal_errs , probs_true , probs_pred = expected_calibration_error (true_models , pred_models , num_bins )
11201119
@@ -1273,7 +1272,13 @@ def plot_confusion_matrix(
12731272 for i in range (cm .shape [0 ]):
12741273 for j in range (cm .shape [1 ]):
12751274 ax .text (
1276- j , i , format (cm [i , j ], fmt ), fontsize = value_fontsize , ha = "center" , va = "center" , color = "white" if cm [i , j ] > thresh else "black"
1275+ j ,
1276+ i ,
1277+ format (cm [i , j ], fmt ),
1278+ fontsize = value_fontsize ,
1279+ ha = "center" ,
1280+ va = "center" ,
1281+ color = "white" if cm [i , j ] > thresh else "black" ,
12771282 )
12781283 if title :
12791284 ax .set_title ("Confusion Matrix" , fontsize = title_fontsize )
0 commit comments