@@ -71,7 +71,7 @@ def plot_recovery(
7171 The posterior draws obtained from n_data_sets
7272 prior_samples : np.ndarray of shape (n_data_sets, n_params)
7373 The prior draws (true parameters) obtained for generating the n_data_sets
74- point_agg : callable, optional, default: np.median
74+ point_agg : callable, optional, default: `` np.median``
7575 The function to apply to the posterior draws to get a point estimate for each marginal.
7676 The default computes the marginal median for each marginal posterior as a robust
7777 point estimate.
@@ -89,7 +89,7 @@ def plot_recovery(
8989 metric_fontsize : int, optional, default: 16
9090 The font size of the goodness-of-fit metric (if provided)
9191 tick_fontsize : int, optional, default: 12
92- The font size of the axis ticklabels
92+ The font size of the axis tick labels
9393 add_corr : bool, optional, default: True
9494 A flag for adding correlation between true and estimates to the plot
9595 add_r2 : bool, optional, default: True
@@ -242,7 +242,7 @@ def plot_z_score_contraction(
242242
243243 post_contraction = 1 - (posterior_variance / prior_variance)
244244
245- In other words, the posterior is a proxy for the reduction in ucnertainty gained by
245+ In other words, the posterior is a proxy for the reduction in uncertainty gained by
246246 replacing the prior with the posterior. The ideal posterior contraction tends to 1.
247247 Contraction near zero indicates that the posterior variance is almost identical to
248248 the prior variance for the particular marginal parameter distribution.
@@ -894,7 +894,7 @@ def plot_losses(
894894 ax .grid (alpha = grid_alpha )
895895 ax .set_title (train_losses .columns [i ], fontsize = title_fontsize )
896896 # Only add legend if there is a validation curve
897- if val_losses is not None :
897+ if val_losses is not None or moving_average :
898898 ax .legend (fontsize = legend_fontsize )
899899 f .tight_layout ()
900900 return f
0 commit comments