@@ -97,16 +97,16 @@ def test_simple_transforms(random_data):
9797
9898 result = ad (random_data )
9999
100- assert np .array_equal (result ["p2" ], np .log (random_data ["p2" ]))
101- assert np .array_equal (result ["t2" ], np .log (random_data ["t2" ]))
102- assert np .array_equal (result ["t1" ], np .log1p (random_data ["t1" ]))
103- assert np .array_equal (result ["p1" ], np .sqrt (random_data ["p1" ]))
100+ assert np .allclose (result ["p2" ], np .log (random_data ["p2" ]))
101+ assert np .allclose (result ["t2" ], np .log (random_data ["t2" ]))
102+ assert np .allclose (result ["t1" ], np .log1p (random_data ["t1" ]))
103+ assert np .allclose (result ["p1" ], np .sqrt (random_data ["p1" ]))
104104
105105 # inverse results should match the original input
106106 inverse = ad (result , inverse = True )
107107
108- assert np .array_equal (inverse ["p2" ], random_data ["p2" ])
109- assert np .array_equal (inverse ["t2" ], random_data ["t2" ])
110- assert np .array_equal (inverse ["t1" ], random_data ["t1" ])
111- # numerical inaccuries prevent np.array_equal to work here
108+ assert np .allclose (inverse ["p2" ], random_data ["p2" ])
109+ assert np .allclose (inverse ["t2" ], random_data ["t2" ])
110+ assert np .allclose (inverse ["t1" ], random_data ["t1" ])
111+
112112 assert np .allclose (inverse ["p1" ], random_data ["p1" ])
0 commit comments