|
| 1 | +from collections.abc import Sequence |
| 2 | +import keras |
| 3 | +from keras import ops |
| 4 | +from keras.saving import register_keras_serializable as serializable |
| 5 | + |
| 6 | +from bayesflow.types import Tensor, Shape |
| 7 | +import bayesflow as bf |
| 8 | +from bayesflow.networks import InferenceNetwork |
| 9 | + |
| 10 | +from bayesflow.utils import ( |
| 11 | + expand_right_as, |
| 12 | + find_network, |
| 13 | + jacobian_trace, |
| 14 | + keras_kwargs, |
| 15 | + serialize_value_or_type, |
| 16 | + deserialize_value_or_type, |
| 17 | + weighted_mean, |
| 18 | + integrate, |
| 19 | +) |
| 20 | + |
| 21 | + |
| 22 | +@serializable(package="bayesflow.networks") |
| 23 | +class DiffusionModel(InferenceNetwork): |
| 24 | + """Diffusion Model as described as Elucidated Diffusion Model in [1]. |
| 25 | +
|
| 26 | + [1] Elucidating the Design Space of Diffusion-Based Generative Models: arXiv:2206.00364 |
| 27 | + """ |
| 28 | + |
| 29 | + MLP_DEFAULT_CONFIG = { |
| 30 | + "widths": (256, 256, 256, 256, 256), |
| 31 | + "activation": "mish", |
| 32 | + "kernel_initializer": "he_normal", |
| 33 | + "residual": True, |
| 34 | + "dropout": 0.0, |
| 35 | + "spectral_normalization": False, |
| 36 | + } |
| 37 | + |
| 38 | + INTEGRATE_DEFAULT_CONFIG = { |
| 39 | + "method": "euler", |
| 40 | + "steps": 100, |
| 41 | + } |
| 42 | + |
| 43 | + def __init__( |
| 44 | + self, |
| 45 | + subnet: str | type = "mlp", |
| 46 | + integrate_kwargs: dict[str, any] = None, |
| 47 | + subnet_kwargs: dict[str, any] = None, |
| 48 | + sigma_data=1.0, |
| 49 | + **kwargs, |
| 50 | + ): |
| 51 | + """ |
| 52 | + Initializes a diffusion model with configurable subnet architecture. |
| 53 | +
|
| 54 | + This model learns a transformation from a Gaussian latent distribution to a target distribution using a |
| 55 | + specified subnet type, which can be an MLP or a custom network. |
| 56 | +
|
| 57 | + The integration steps can be customized with additional parameters available in the respective |
| 58 | + configuration dictionary. |
| 59 | +
|
| 60 | + Parameters |
| 61 | + ---------- |
| 62 | + subnet : str or type, optional |
| 63 | + The architecture used for the transformation network. Can be "mlp" or a custom |
| 64 | + callable network. Default is "mlp". |
| 65 | + integrate_kwargs : dict[str, any], optional |
| 66 | + Additional keyword arguments for the integration process. Default is None. |
| 67 | + subnet_kwargs : dict[str, any], optional |
| 68 | + Keyword arguments passed to the subnet constructor or used to update the default MLP settings. |
| 69 | + sigma_data : float, optional |
| 70 | + Averaged standard deviation of the target distribution. Default is 1.0. |
| 71 | + **kwargs |
| 72 | + Additional keyword arguments passed to the subnet and other components. |
| 73 | + """ |
| 74 | + |
| 75 | + super().__init__(base_distribution=None, **keras_kwargs(kwargs)) |
| 76 | + |
| 77 | + # internal tunable parameters not intended to be modified by the average user |
| 78 | + self.max_sigma = kwargs.get("max_sigma", 80.0) |
| 79 | + self.min_sigma = kwargs.get("min_sigma", 1e-4) |
| 80 | + self.rho = kwargs.get("rho", 7) |
| 81 | + # hyper-parameters for sampling the noise level |
| 82 | + self.p_mean = kwargs.get("p_mean", -1.2) |
| 83 | + self.p_std = kwargs.get("p_std", 1.2) |
| 84 | + |
| 85 | + # latent distribution (not configurable) |
| 86 | + self.base_distribution = bf.distributions.DiagonalNormal(mean=0.0, std=self.max_sigma) |
| 87 | + self.integrate_kwargs = self.INTEGRATE_DEFAULT_CONFIG | (integrate_kwargs or {}) |
| 88 | + |
| 89 | + self.sigma_data = sigma_data |
| 90 | + |
| 91 | + self.seed_generator = keras.random.SeedGenerator() |
| 92 | + |
| 93 | + subnet_kwargs = subnet_kwargs or {} |
| 94 | + if subnet == "mlp": |
| 95 | + subnet_kwargs = self.MLP_DEFAULT_CONFIG | subnet_kwargs |
| 96 | + |
| 97 | + self.subnet = find_network(subnet, **subnet_kwargs) |
| 98 | + self.output_projector = keras.layers.Dense(units=None, bias_initializer="zeros") |
| 99 | + |
| 100 | + # serialization: store all parameters necessary to call __init__ |
| 101 | + self.config = { |
| 102 | + "integrate_kwargs": self.integrate_kwargs, |
| 103 | + "subnet_kwargs": subnet_kwargs, |
| 104 | + "sigma_data": sigma_data, |
| 105 | + **kwargs, |
| 106 | + } |
| 107 | + self.config = serialize_value_or_type(self.config, "subnet", subnet) |
| 108 | + |
| 109 | + def build(self, xz_shape: Shape, conditions_shape: Shape = None) -> None: |
| 110 | + super().build(xz_shape, conditions_shape=conditions_shape) |
| 111 | + |
| 112 | + self.output_projector.units = xz_shape[-1] |
| 113 | + input_shape = list(xz_shape) |
| 114 | + |
| 115 | + # construct time vector |
| 116 | + input_shape[-1] += 1 |
| 117 | + if conditions_shape is not None: |
| 118 | + input_shape[-1] += conditions_shape[-1] |
| 119 | + |
| 120 | + input_shape = tuple(input_shape) |
| 121 | + |
| 122 | + self.subnet.build(input_shape) |
| 123 | + out_shape = self.subnet.compute_output_shape(input_shape) |
| 124 | + self.output_projector.build(out_shape) |
| 125 | + |
| 126 | + def get_config(self): |
| 127 | + base_config = super().get_config() |
| 128 | + return base_config | self.config |
| 129 | + |
| 130 | + @classmethod |
| 131 | + def from_config(cls, config): |
| 132 | + config = deserialize_value_or_type(config, "subnet") |
| 133 | + return cls(**config) |
| 134 | + |
| 135 | + def _c_skip_fn(self, sigma): |
| 136 | + return self.sigma_data**2 / (sigma**2 + self.sigma_data**2) |
| 137 | + |
| 138 | + def _c_out_fn(self, sigma): |
| 139 | + return sigma * self.sigma_data / ops.sqrt(self.sigma_data**2 + sigma**2) |
| 140 | + |
| 141 | + def _c_in_fn(self, sigma): |
| 142 | + return 1.0 / ops.sqrt(sigma**2 + self.sigma_data**2) |
| 143 | + |
| 144 | + def _c_noise_fn(self, sigma): |
| 145 | + return 0.25 * ops.log(sigma) |
| 146 | + |
| 147 | + def _denoiser_fn( |
| 148 | + self, |
| 149 | + xz: Tensor, |
| 150 | + sigma: Tensor, |
| 151 | + conditions: Tensor = None, |
| 152 | + training: bool = False, |
| 153 | + ): |
| 154 | + # calculate output of the network |
| 155 | + c_in = self._c_in_fn(sigma) |
| 156 | + c_noise = self._c_noise_fn(sigma) |
| 157 | + xz_pre = c_in * xz |
| 158 | + if conditions is None: |
| 159 | + xtc = keras.ops.concatenate([xz_pre, c_noise], axis=-1) |
| 160 | + else: |
| 161 | + xtc = keras.ops.concatenate([xz_pre, c_noise, conditions], axis=-1) |
| 162 | + out = self.output_projector(self.subnet(xtc, training=training), training=training) |
| 163 | + return self._c_skip_fn(sigma) * xz + self._c_out_fn(sigma) * out |
| 164 | + |
| 165 | + def velocity( |
| 166 | + self, |
| 167 | + xz: Tensor, |
| 168 | + sigma: float | Tensor, |
| 169 | + conditions: Tensor = None, |
| 170 | + training: bool = False, |
| 171 | + ) -> Tensor: |
| 172 | + # transform sigma vector into correct shape |
| 173 | + sigma = keras.ops.convert_to_tensor(sigma, dtype=keras.ops.dtype(xz)) |
| 174 | + sigma = expand_right_as(sigma, xz) |
| 175 | + sigma = keras.ops.broadcast_to(sigma, keras.ops.shape(xz)[:-1] + (1,)) |
| 176 | + |
| 177 | + d = self._denoiser_fn(xz, sigma, conditions, training=training) |
| 178 | + return (xz - d) / sigma |
| 179 | + |
| 180 | + def _velocity_trace( |
| 181 | + self, |
| 182 | + xz: Tensor, |
| 183 | + sigma: Tensor, |
| 184 | + conditions: Tensor = None, |
| 185 | + max_steps: int = None, |
| 186 | + training: bool = False, |
| 187 | + ) -> (Tensor, Tensor): |
| 188 | + def f(x): |
| 189 | + return self.velocity(x, sigma=sigma, conditions=conditions, training=training) |
| 190 | + |
| 191 | + v, trace = jacobian_trace(f, xz, max_steps=max_steps, seed=self.seed_generator, return_output=True) |
| 192 | + |
| 193 | + return v, keras.ops.expand_dims(trace, axis=-1) |
| 194 | + |
| 195 | + def _forward( |
| 196 | + self, |
| 197 | + x: Tensor, |
| 198 | + conditions: Tensor = None, |
| 199 | + density: bool = False, |
| 200 | + training: bool = False, |
| 201 | + **kwargs, |
| 202 | + ) -> Tensor | tuple[Tensor, Tensor]: |
| 203 | + integrate_kwargs = self.integrate_kwargs | kwargs |
| 204 | + if isinstance(integrate_kwargs["steps"], int): |
| 205 | + # set schedule for specified number of steps |
| 206 | + integrate_kwargs["steps"] = self._integration_schedule(integrate_kwargs["steps"], dtype=ops.dtype(x)) |
| 207 | + if density: |
| 208 | + |
| 209 | + def deltas(time, xz): |
| 210 | + v, trace = self._velocity_trace(xz, sigma=time, conditions=conditions, training=training) |
| 211 | + return {"xz": v, "trace": trace} |
| 212 | + |
| 213 | + state = { |
| 214 | + "xz": x, |
| 215 | + "trace": keras.ops.zeros(keras.ops.shape(x)[:-1] + (1,), dtype=keras.ops.dtype(x)), |
| 216 | + } |
| 217 | + state = integrate( |
| 218 | + deltas, |
| 219 | + state, |
| 220 | + **integrate_kwargs, |
| 221 | + ) |
| 222 | + |
| 223 | + z = state["xz"] |
| 224 | + log_density = self.base_distribution.log_prob(z) + keras.ops.squeeze(state["trace"], axis=-1) |
| 225 | + |
| 226 | + return z, log_density |
| 227 | + |
| 228 | + def deltas(time, xz): |
| 229 | + return {"xz": self.velocity(xz, sigma=time, conditions=conditions, training=training)} |
| 230 | + |
| 231 | + state = {"xz": x} |
| 232 | + state = integrate( |
| 233 | + deltas, |
| 234 | + state, |
| 235 | + **integrate_kwargs, |
| 236 | + ) |
| 237 | + |
| 238 | + z = state["xz"] |
| 239 | + |
| 240 | + return z |
| 241 | + |
| 242 | + def _inverse( |
| 243 | + self, |
| 244 | + z: Tensor, |
| 245 | + conditions: Tensor = None, |
| 246 | + density: bool = False, |
| 247 | + training: bool = False, |
| 248 | + **kwargs, |
| 249 | + ) -> Tensor | tuple[Tensor, Tensor]: |
| 250 | + integrate_kwargs = self.integrate_kwargs | kwargs |
| 251 | + if isinstance(integrate_kwargs["steps"], int): |
| 252 | + # set schedule for specified number of steps |
| 253 | + integrate_kwargs["steps"] = self._integration_schedule( |
| 254 | + integrate_kwargs["steps"], inverse=True, dtype=ops.dtype(z) |
| 255 | + ) |
| 256 | + if density: |
| 257 | + |
| 258 | + def deltas(time, xz): |
| 259 | + v, trace = self._velocity_trace(xz, sigma=time, conditions=conditions, training=training) |
| 260 | + return {"xz": v, "trace": trace} |
| 261 | + |
| 262 | + state = { |
| 263 | + "xz": z, |
| 264 | + "trace": keras.ops.zeros(keras.ops.shape(z)[:-1] + (1,), dtype=keras.ops.dtype(z)), |
| 265 | + } |
| 266 | + state = integrate(deltas, state, **integrate_kwargs) |
| 267 | + |
| 268 | + x = state["xz"] |
| 269 | + log_density = self.base_distribution.log_prob(z) - keras.ops.squeeze(state["trace"], axis=-1) |
| 270 | + |
| 271 | + return x, log_density |
| 272 | + |
| 273 | + def deltas(time, xz): |
| 274 | + return {"xz": self.velocity(xz, sigma=time, conditions=conditions, training=training)} |
| 275 | + |
| 276 | + state = {"xz": z} |
| 277 | + state = integrate( |
| 278 | + deltas, |
| 279 | + state, |
| 280 | + **integrate_kwargs, |
| 281 | + ) |
| 282 | + |
| 283 | + x = state["xz"] |
| 284 | + |
| 285 | + return x |
| 286 | + |
| 287 | + def compute_metrics( |
| 288 | + self, |
| 289 | + x: Tensor | Sequence[Tensor, ...], |
| 290 | + conditions: Tensor = None, |
| 291 | + sample_weight: Tensor = None, |
| 292 | + stage: str = "training", |
| 293 | + ) -> dict[str, Tensor]: |
| 294 | + training = stage == "training" |
| 295 | + if not self.built: |
| 296 | + xz_shape = keras.ops.shape(x) |
| 297 | + conditions_shape = None if conditions is None else keras.ops.shape(conditions) |
| 298 | + self.build(xz_shape, conditions_shape) |
| 299 | + |
| 300 | + # sample log-noise level |
| 301 | + log_sigma = self.p_mean + self.p_std * keras.random.normal( |
| 302 | + ops.shape(x)[:1], dtype=ops.dtype(x), seed=self.seed_generator |
| 303 | + ) |
| 304 | + # noise level with shape (batch_size, 1) |
| 305 | + sigma = ops.exp(log_sigma)[:, None] |
| 306 | + |
| 307 | + # generate noise vector |
| 308 | + z = sigma * keras.random.normal(ops.shape(x), dtype=ops.dtype(x), seed=self.seed_generator) |
| 309 | + |
| 310 | + # calculate preconditioning |
| 311 | + c_skip = self._c_skip_fn(sigma) |
| 312 | + c_out = self._c_out_fn(sigma) |
| 313 | + c_in = self._c_in_fn(sigma) |
| 314 | + c_noise = self._c_noise_fn(sigma) |
| 315 | + xz_pre = c_in * (x + z) |
| 316 | + |
| 317 | + # calculate output of the network |
| 318 | + if conditions is None: |
| 319 | + xtc = keras.ops.concatenate([xz_pre, c_noise], axis=-1) |
| 320 | + else: |
| 321 | + xtc = keras.ops.concatenate([xz_pre, c_noise, conditions], axis=-1) |
| 322 | + |
| 323 | + out = self.output_projector(self.subnet(xtc, training=training), training=training) |
| 324 | + |
| 325 | + # Calculate loss: |
| 326 | + lam = 1 / c_out[:, 0] ** 2 |
| 327 | + effective_weight = lam * c_out[:, 0] ** 2 |
| 328 | + unweighted_loss = ops.mean((out - 1 / c_out * (x - c_skip * (x + z))) ** 2, axis=-1) |
| 329 | + loss = effective_weight * unweighted_loss |
| 330 | + loss = weighted_mean(loss, sample_weight) |
| 331 | + |
| 332 | + base_metrics = super().compute_metrics(x, conditions, sample_weight, stage) |
| 333 | + return base_metrics | {"loss": loss} |
| 334 | + |
| 335 | + def _integration_schedule(self, steps, inverse=False, dtype=None): |
| 336 | + def sigma_i(i, steps): |
| 337 | + N = steps + 1 |
| 338 | + return ( |
| 339 | + self.max_sigma ** (1 / self.rho) |
| 340 | + + (i / (N - 1)) * (self.min_sigma ** (1 / self.rho) - self.max_sigma ** (1 / self.rho)) |
| 341 | + ) ** self.rho |
| 342 | + |
| 343 | + steps = sigma_i(ops.arange(steps + 1, dtype=dtype), steps) |
| 344 | + if not inverse: |
| 345 | + steps = ops.flip(steps) |
| 346 | + return steps |
0 commit comments