Skip to content

Commit 6c0c153

Browse files
committed
Slight doc fixes
1 parent 15890fe commit 6c0c153

File tree

1 file changed

+18
-5
lines changed

1 file changed

+18
-5
lines changed

bayesflow/amortizers.py

Lines changed: 18 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -86,6 +86,10 @@ class AmortizedPosterior(tf.keras.Model, AmortizedTarget):
8686
Tails of lipschitz triangular flows.
8787
In International Conference on Machine Learning (pp. 4673-4681). PMLR.
8888
89+
[4] Alexanderson, S., & Henter, G. E. (2020).
90+
Robust model training and generalisation with Studentising flows.
91+
arXiv preprint arXiv:2006.06599.
92+
8993
Serves as in interface for learning ``p(parameters | data, context).``
9094
"""
9195

@@ -662,7 +666,11 @@ def _determine_latent_dist(self, latent_dist):
662666

663667
class AmortizedPosteriorLikelihood(tf.keras.Model, AmortizedTarget):
664668
"""An interface for jointly learning a surrogate model of the simulator and an approximate
665-
posterior given a generative model.
669+
posterior given a generative model, as proposed by:
670+
671+
[1] Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Köthe, U., & Bürkner, P. C. (2023).
672+
JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models.
673+
arXiv preprint arXiv:2302.09125.
666674
"""
667675

668676
def __init__(self, amortized_posterior, amortized_likelihood, **kwargs):
@@ -671,9 +679,11 @@ def __init__(self, amortized_posterior, amortized_likelihood, **kwargs):
671679
Parameters
672680
----------
673681
amortized_posterior : an instance of AmortizedPosterior or a custom tf.keras.Model
674-
The generative neural posterior approximator.
682+
The generative neural posterior approximator
675683
amortized_likelihood : an instance of AmortizedLikelihood or a custom tf.keras.Model
676-
The generative neural likelihood approximator.
684+
The generative neural likelihood approximator
685+
**kwargs : dict, optional, default: {}
686+
Additional keyword arguments passed to the ``__init__`` method of a ``tf.keras.Model`` instance
677687
"""
678688

679689
tf.keras.Model.__init__(self, **kwargs)
@@ -878,7 +888,7 @@ class AmortizedModelComparison(tf.keras.Model):
878888
arXiv preprint arXiv:2301.11873.
879889
880890
Note: the original paper [1] does not distinguish between the summary and the evidential networks, but
881-
treats them as a whole, with the appropriate architetcure dictated by the model application. For the
891+
treats them as a whole, with the appropriate architecture dictated by the model application. For the
882892
sake of consistency and modularity, the BayesFlow library separates the two constructs.
883893
"""
884894

@@ -954,6 +964,9 @@ def posterior_probs(self, input_dict, to_numpy=True, **kwargs):
954964
`direct_conditions` - the conditioning variables that the directly passed to the evidential network
955965
to_numpy : bool, optional, default: True
956966
Flag indicating whether to return the PMPs a ``np.ndarray`` or a ``tf.Tensor``
967+
**kwargs : dict, optional, default: {}
968+
Additional keyword arguments passed to the networks
969+
957970
Returns
958971
-------
959972
out : tf.Tensor of shape (batch_size, ..., num_models)
@@ -991,7 +1004,7 @@ def compute_loss(self, input_dict, **kwargs):
9911004
return loss
9921005

9931006
def _compute_summary_condition(self, summary_conditions, direct_conditions, **kwargs):
994-
"""Determines how to concatenate the provided conditions."""
1007+
"""Helper method to determines how to concatenate the provided conditions."""
9951008

9961009
# Compute learnable summaries, if given
9971010
if self.summary_net is not None:

0 commit comments

Comments
 (0)