Skip to content

Commit 72fb8dd

Browse files
committed
Add updated readme [skip ci]
1 parent 1c8e65a commit 72fb8dd

File tree

1 file changed

+65
-18
lines changed

1 file changed

+65
-18
lines changed

README.md

Lines changed: 65 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -7,13 +7,14 @@ Welcome to our BayesFlow library for efficient simulation-based Bayesian workflo
77

88
For starters, check out some of our walk-through notebooks:
99

10-
1. [Quickstart amortized posterior estimation](docs/source/tutorial_notebooks/Intro_Amortized_Posterior_Estimation.ipynb)
11-
2. [Detecting model misspecification in posterior inference](docs/source/tutorial_notebooks/Model_Misspecification.ipynb)
12-
3. [Principled Bayesian workflow for cognitive models](docs/source/tutorial_notebooks/LCA_Model_Posterior_Estimation.ipynb)
13-
4. [Posterior estimation for ODEs](docs/source/tutorial_notebooks/Linear_ODE_system.ipynb)
14-
5. [Posterior estimation for SIR-like models](docs/source/tutorial_notebooks/Covid19_Initial_Posterior_Estimation.ipynb)
15-
6. [Model comparison for cognitive models](docs/source/tutorial_notebooks/Model_Comparison_MPT.ipynb)
16-
7. [Hierarchical model comparison for cognitive models](docs/source/tutorial_notebooks/Hierarchical_Model_Comparison_MPT.ipynb)
10+
1. [Quickstart amortized posterior estimation](examples/Intro_Amortized_Posterior_Estimation.ipynb)
11+
2. [Tackling strange bimodal distributions](examples/TwoMoons_Bimodal_Posterior.ipynb)
12+
3. [Detecting model misspecification in posterior inference](examples/Model_Misspecification.ipynb)
13+
4. [Principled Bayesian workflow for cognitive models](examples/LCA_Model_Posterior_Estimation.ipynb)
14+
5. [Posterior estimation for ODEs](examples/Linear_ODE_system.ipynb)
15+
6. [Posterior estimation for SIR-like models](examples/Covid19_Initial_Posterior_Estimation.ipynb)
16+
7. [Model comparison for cognitive models](examples/Model_Comparison_MPT.ipynb)
17+
8. [Hierarchical model comparison for cognitive models](examples/Hierarchical_Model_Comparison_MPT.ipynb)
1718

1819
## Project Documentation
1920

@@ -83,7 +84,7 @@ amortized_posterior = bf.amortizers.AmortizedPosterior(inference_net, summary_ne
8384
Finally, we connect the networks with the generative model via a `Trainer` instance:
8485

8586
```python
86-
trainer = bf.trainers.Trainer(amortizer=amortized_posterior, generative_model=generative_model)
87+
trainer = bf.trainers.Trainer(amortizer=amortized_posterior, generative_model=generative_model, memory=True)
8788
```
8889

8990
We are now ready to train an amortized posterior approximator. For instance,
@@ -141,18 +142,17 @@ model parameters as a result of conditioning on the data.
141142

142143
- Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., & Köthe, U. (2020).
143144
BayesFlow: Learning complex stochastic models with invertible neural networks.
144-
<em>IEEE Transactions on Neural Networks and Learning Systems</em>, available
145-
for free at: https://arxiv.org/abs/2003.06281.
145+
<em>IEEE Transactions on Neural Networks and Learning Systems, 33(4)</em>, 1452-1466.
146146

147147
- Radev, S. T., Graw, F., Chen, S., Mutters, N. T., Eichel, V. M., Bärnighausen, T., & Köthe, U. (2021).
148-
OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany. <em>PLoS computational biology</em>, 17(10), e1009472.
148+
OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany. <em>PLoS computational biology, 17(10)</em>, e1009472.
149149

150150
- Bieringer, S., Butter, A., Heimel, T., Höche, S., Köthe, U., Plehn, T., & Radev, S. T. (2021).
151-
Measuring QCD splittings with invertible networks. <em>SciPost Physics</em>, 10(6), 126.
151+
Measuring QCD splittings with invertible networks. <em>SciPost Physics, 10(6)</em>, 126.
152152

153153
- von Krause, M., Radev, S. T., & Voss, A. (2022).
154154
Mental speed is high until age 60 as revealed by analysis of over a million participants.
155-
<em>Nature Human Behaviour</em>, 6(5), 700-708.
155+
<em>Nature Human Behaviour, 6(5)</em>, 700-708.
156156

157157
## Model Misspecification
158158

@@ -174,7 +174,7 @@ The amortizer knows how to combine its losses and you can inspect the summary sp
174174

175175
### References and Further Reading
176176

177-
- Schmitt, M., Bürkner P. C., Köthe U., & Radev S. T. (2021). Detecting Model
177+
- Schmitt, M., Bürkner P. C., Köthe U., & Radev S. T. (2022). Detecting Model
178178
Misspecification in Amortized Bayesian Inference with Neural Networks. <em>ArXiv
179179
preprint</em>, available for free at: https://arxiv.org/abs/2112.08866
180180

@@ -247,7 +247,7 @@ conf_matrix = bf.diagnostics.plot_confusion_matrix(sims["model_indices"], model_
247247

248248
For the vast majority of simulated data sets, the "true" data-generating model is correctly identified. With these diagnostic results backing us up, we can proceed and apply our trained network to empirical data.
249249

250-
BayesFlow is also able to conduct model comparison for hierarchical models. See this [tutorial notebook](docs/source/tutorial_notebooks/Hierarchical_Model_Comparison_MPT.ipynb) for an introduction to the associated workflow.
250+
BayesFlow is also able to conduct model comparison for hierarchical models. See this [tutorial notebook](examples/Hierarchical_Model_Comparison_MPT.ipynb) for an introduction to the associated workflow.
251251

252252
### References and Further Reading
253253

@@ -283,9 +283,56 @@ Learning both densities enables us to approximate marginal likelihoods or perfor
283283

284284
### References and Further Reading
285285

286-
Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Köthe, U., & Bürkner, P. C. (2023).
287-
JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models. <em>arXiv preprint</em>,
288-
available for free at: https://arxiv.org/abs/2302.09125
286+
Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Köthe, U., & Bürkner, P.-C. (2023).
287+
JANA: Jointly amortized neural approximation of complex Bayesian models.
288+
*Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, 216*, 1695-1706.
289+
([arXiv](https://arxiv.org/abs/2302.09125))([PLMR](https://proceedings.mlr.press/v216/radev23a.html))
289290

290291
## Support
291292
This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy -– EXC-2181 - 390900948 (the Heidelberg Cluster of Excellence STRUCTURES) and -- EXC-2075 - 390740016 (the Stuttgart Cluster of Excellence SimTech), the Informatics for Life initiative funded by the Klaus Tschira Foundation, and Google Cloud through the Academic Research Grants program.
293+
294+
## Citing BayesFlow
295+
296+
You can cite BayesFlow along the lines of:
297+
298+
- We approximated the posterior with neural posterior estimation and learned summary statistics (NPE; Radev et al., 2020), as implemented in the BayesFlow software for amortized Bayesian workflows (Radev et al., 2023b).
299+
- We approximated the likelihood with neural likelihood estimation (NLE; Papamakarios et al., 2019) without hand-cafted summary statistics, as implemented in the BayesFlow software for amortized Bayesian workflows (Radev et al., 2023b).
300+
- We performed simultaneous posterior and likelihood estimation with jointly amortized neural approximation (JANA; Radev et al., 2023a), as implemented in the BayesFlow software for amortized Bayesian workflows (Radev et al., 2023b).
301+
302+
1. Radev, S. T., Schmitt, M., Schumacher, L., Elsemüller, L., Pratz, V., Schälte, Y., Köthe, U., & Bürkner, P.-C. (2023). BayesFlow: Amortized Bayesian workflows with neural networks. *arXiv:2306.16015*. ([arXiv](https://arxiv.org/abs/2306.16015))
303+
2. Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., Köthe, U. (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. *IEEE Transactions on Neural Networks and Learning Systems, 33(4)*, 1452-1466. ([arXiv](https://arxiv.org/abs/2003.06281))([IEEE TNNLS](https://ieeexplore.ieee.org/document/9298920))
304+
3. Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Köthe, U., & Bürkner, P.-C. (2023). JANA: Jointly amortized neural approximation of complex Bayesian models. *Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, 216*, 1695-1706. ([arXiv](https://arxiv.org/abs/2302.09125))([PLMR](https://proceedings.mlr.press/v216/radev23a.html))
305+
306+
**BibTeX:**
307+
308+
```
309+
@misc{radev2023bayesflow,
310+
title = {{BayesFlow}: Amortized Bayesian workflows with neural networks},
311+
author = {Stefan T Radev and Marvin Schmitt and Lukas Schumacher and Lasse Elsem\"{u}ller and Valentin Pratz and Yannik Sch\"{a}lte and Ullrich K\"{o}the and Paul-Christian B\"{u}rkner},
312+
year = {2023},
313+
publisher= {arXiv},
314+
url={https://arxiv.org/abs/2306.16015}
315+
}
316+
317+
@article{radev2020bayesflow,
318+
title={{BayesFlow}: Learning complex stochastic models with invertible neural networks},
319+
author={Radev, Stefan T. and Mertens, Ulf K. and Voss, Andreas and Ardizzone, Lynton and K{\"o}the, Ullrich},
320+
journal={IEEE transactions on neural networks and learning systems},
321+
volume={33},
322+
number={4},
323+
pages={1452--1466},
324+
year={2020},
325+
publisher={IEEE}
326+
}
327+
328+
@inproceedings{pmlr-v216-radev23a,
329+
title = {{JANA}: Jointly amortized neural approximation of complex {B}ayesian models},
330+
author = {Radev, Stefan T. and Schmitt, Marvin and Pratz, Valentin and Picchini, Umberto and K\"othe, Ullrich and B\"urkner, Paul-Christian},
331+
booktitle = {Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence},
332+
pages = {1695--1706},
333+
year = {2023},
334+
volume = {216},
335+
series = {Proceedings of Machine Learning Research},
336+
publisher = {PMLR}
337+
}
338+
```

0 commit comments

Comments
 (0)