@@ -20,6 +20,18 @@ class ContinuousApproximator(Approximator):
2020 """
2121 Defines a workflow for performing fast posterior or likelihood inference.
2222 The distribution is approximated with an inference network and an optional summary network.
23+
24+ Parameters
25+ ----------
26+ adapter : Adapter
27+ Adapter for data processing. You can use :py:meth:`build_adapter`
28+ to create it.
29+ inference_network : InferenceNetwork
30+ The inference network used for posterior or likelihood approximation.
31+ summary_network : SummaryNetwork, optional
32+ The summary network used for data summarization (default is None).
33+ **kwargs : dict, optional
34+ Additional arguments passed to the :py:class:`bayesflow.approximators.Approximator` class.
2335 """
2436
2537 def __init__ (
@@ -42,6 +54,17 @@ def build_adapter(
4254 inference_conditions : Sequence [str ] = None ,
4355 summary_variables : Sequence [str ] = None ,
4456 ) -> Adapter :
57+ """Create an :py:class:`~bayesflow.adapters.Adapter` suited for the approximator.
58+
59+ Parameters
60+ ----------
61+ inference_variables : Sequence of str
62+ Names of the inference variables in the data
63+ inference_conditions : Sequence of str, optional
64+ Names of the inference conditions in the data
65+ summary_variables : Sequence of str, optional
66+ Names of the summary variables in the data
67+ """
4568 adapter = Adapter .create_default (inference_variables )
4669
4770 if inference_conditions is not None :
0 commit comments