@@ -84,9 +84,9 @@ def plot_recovery(
8484 The parameter names for nice plot titles. Inferred if None
8585 fig_size : tuple or None, optional, default : None
8686 The figure size passed to the matplotlib constructor. Inferred if None.
87- label_fontsize : int, optional, default: 14
87+ label_fontsize : int, optional, default: 16
8888 The font size of the y-label text
89- title_fontsize : int, optional, default: 16
89+ title_fontsize : int, optional, default: 18
9090 The font size of the title text
9191 metric_fontsize : int, optional, default: 16
9292 The font size of the goodness-of-fit metric (if provided)
@@ -114,7 +114,7 @@ def plot_recovery(
114114 Raises
115115 ------
116116 ShapeError
117- If there is a deviation form the expected shapes of ``post_samples`` and ``prior_samples``.
117+ If there is a deviation from the expected shapes of ``post_samples`` and ``prior_samples``.
118118 """
119119
120120 # Sanity check
@@ -252,12 +252,12 @@ def plot_z_score_contraction(
252252
253253 post_contraction = 1 - (posterior_variance / prior_variance)
254254
255- In other words, the posterior is a proxy for the reduction in uncertainty gained by
255+ In other words, the posterior contraction is a proxy for the reduction in uncertainty gained by
256256 replacing the prior with the posterior. The ideal posterior contraction tends to 1.
257257 Contraction near zero indicates that the posterior variance is almost identical to
258258 the prior variance for the particular marginal parameter distribution.
259259
260- Note: Means and variances will be estimated vie their sample-based estimators.
260+ Note: Means and variances will be estimated via their sample-based estimators.
261261
262262 [1] Schad, D. J., Betancourt, M., & Vasishth, S. (2021).
263263 Toward a principled Bayesian workflow in cognitive science.
@@ -275,9 +275,9 @@ def plot_z_score_contraction(
275275 The parameter names for nice plot titles. Inferred if None
276276 fig_size : tuple or None, optional, default : None
277277 The figure size passed to the matplotlib constructor. Inferred if None.
278- label_fontsize : int, optional, default: 14
278+ label_fontsize : int, optional, default: 16
279279 The font size of the y-label text
280- title_fontsize : int, optional, default: 16
280+ title_fontsize : int, optional, default: 18
281281 The font size of the title text
282282 tick_fontsize : int, optional, default: 12
283283 The font size of the axis ticklabels
@@ -295,7 +295,7 @@ def plot_z_score_contraction(
295295 Raises
296296 ------
297297 ShapeError
298- If there is a deviation form the expected shapes of ``post_samples`` and ``prior_samples``.
298+ If there is a deviation from the expected shapes of ``post_samples`` and ``prior_samples``.
299299 """
300300
301301 # Sanity check for shape integrity
@@ -421,7 +421,7 @@ def plot_sbc_ecdf(
421421 The font size of the y-label and y-label texts
422422 legend_fontsize : int, optional, default: 14
423423 The font size of the legend text
424- title_fontsize : int, optional, default: 16
424+ title_fontsize : int, optional, default: 18
425425 The font size of the title text. Only relevant if `stacked=False`
426426 tick_fontsize : int, optional, default: 12
427427 The font size of the axis ticklabels
@@ -587,11 +587,11 @@ def plot_sbc_histograms(
587587 The figure size passed to the matplotlib constructor. Inferred if None
588588 num_bins : int, optional, default: 10
589589 The number of bins to use for each marginal histogram
590- binomial_interval : float in (0, 1), optional, default: 0.95
590+ binomial_interval : float in (0, 1), optional, default: 0.99
591591 The width of the confidence interval for the binomial distribution
592- label_fontsize : int, optional, default: 14
592+ label_fontsize : int, optional, default: 16
593593 The font size of the y-label text
594- title_fontsize : int, optional, default: 16
594+ title_fontsize : int, optional, default: 18
595595 The font size of the title text
596596 tick_fontsize : int, optional, default: 12
597597 The font size of the axis ticklabels
@@ -1077,7 +1077,7 @@ def plot_calibration_curves(
10771077 The font size of the y-label and y-label texts
10781078 legend_fontsize : int, optional, default: 14
10791079 The font size of the legend text (ECE value)
1080- title_fontsize : int, optional, default: 16
1080+ title_fontsize : int, optional, default: 18
10811081 The font size of the title text. Only relevant if `stacked=False`
10821082 tick_fontsize : int, optional, default: 12
10831083 The font size of the axis ticklabels
@@ -1296,20 +1296,20 @@ def plot_mmd_hypothesis_test(
12961296 The samples from the MMD sampling distribution under the null hypothesis "the model is well-specified"
12971297 mmd_observed : float
12981298 The observed MMD value
1299- alpha_level : float
1299+ alpha_level : float, optional, default: 0.05
13001300 The rejection probability (type I error)
1301- null_color : str or tuple
1301+ null_color : str or tuple, optional, default: (0.16407, 0.020171, 0.577478)
13021302 The color of the H0 sampling distribution
1303- observed_color : str or tuple
1303+ observed_color : str or tuple, optional, default: "red"
13041304 The color of the observed MMD
1305- alpha_color : str or tuple
1305+ alpha_color : str or tuple, optional, default: "orange"
13061306 The color of the rejection area
1307- truncate_vlines_at_kde: bool
1307+ truncate_vlines_at_kde: bool, optional, default: False
13081308 true: cut off the vlines at the kde
13091309 false: continue kde lines across the plot
1310- xmin : float
1310+ xmin : float, optional, default: None
13111311 The lower x-axis limit
1312- xmax : float
1312+ xmax : float, optional, default: None
13131313 The upper x-axis limit
13141314 bw_factor : float, optional, default: 1.5
13151315 bandwidth (aka. smoothing parameter) of the kernel density estimate
0 commit comments