@@ -8,12 +8,13 @@ Welcome to our BayesFlow library for efficient simulation-based Bayesian workflo
88For starters, check out some of our walk-through notebooks:
99
10101 . [ Quickstart amortized posterior estimation] ( examples/Intro_Amortized_Posterior_Estimation.ipynb )
11- 2 . [ Detecting model misspecification in posterior inference] ( examples/Model_Misspecification.ipynb )
12- 3 . [ Principled Bayesian workflow for cognitive models] ( examples/LCA_Model_Posterior_Estimation.ipynb )
13- 4 . [ Posterior estimation for ODEs] ( examples/Linear_ODE_system.ipynb )
14- 5 . [ Posterior estimation for SIR-like models] ( examples/Covid19_Initial_Posterior_Estimation.ipynb )
15- 6 . [ Model comparison for cognitive models] ( examples/Model_Comparison_MPT.ipynb )
16- 7 . [ Hierarchical model comparison for cognitive models] ( examples/Hierarchical_Model_Comparison_MPT.ipynb )
11+ 2 . [ Tackling strange bimodal distributions] ( examples/TwoMoons_Bimodal_Posterior.ipynb )
12+ 3 . [ Detecting model misspecification in posterior inference] ( examples/Model_Misspecification.ipynb )
13+ 4 . [ Principled Bayesian workflow for cognitive models] ( examples/LCA_Model_Posterior_Estimation.ipynb )
14+ 5 . [ Posterior estimation for ODEs] ( examples/Linear_ODE_system.ipynb )
15+ 6 . [ Posterior estimation for SIR-like models] ( examples/Covid19_Initial_Posterior_Estimation.ipynb )
16+ 7 . [ Model comparison for cognitive models] ( examples/Model_Comparison_MPT.ipynb )
17+ 8 . [ Hierarchical model comparison for cognitive models] ( examples/Hierarchical_Model_Comparison_MPT.ipynb )
1718
1819## Project Documentation
1920
@@ -83,7 +84,7 @@ amortized_posterior = bf.amortizers.AmortizedPosterior(inference_net, summary_ne
8384Finally, we connect the networks with the generative model via a ` Trainer ` instance:
8485
8586``` python
86- trainer = bf.trainers.Trainer(amortizer = amortized_posterior, generative_model = generative_model)
87+ trainer = bf.trainers.Trainer(amortizer = amortized_posterior, generative_model = generative_model, memory = True )
8788```
8889
8990We are now ready to train an amortized posterior approximator. For instance,
@@ -282,9 +283,9 @@ Learning both densities enables us to approximate marginal likelihoods or perfor
282283
283284### References and Further Reading
284285
285- Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Köthe, U., & Bürkner, P.-C. (2023).
286- JANA: Jointly amortized neural approximation of complex Bayesian models.
287- * Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, 216* , 1695-1706.
286+ Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Köthe, U., & Bürkner, P.-C. (2023).
287+ JANA: Jointly amortized neural approximation of complex Bayesian models.
288+ * Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, 216* , 1695-1706.
288289([ arXiv] ( https://arxiv.org/abs/2302.09125 ) )([ PLMR] ( https://proceedings.mlr.press/v216/radev23a.html ) )
289290
290291## Support
0 commit comments