Skip to content

Commit 8e840a3

Browse files
committed
Update readme with new tutorial
1 parent ea319a9 commit 8e840a3

File tree

1 file changed

+11
-10
lines changed

1 file changed

+11
-10
lines changed

README.md

Lines changed: 11 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -8,12 +8,13 @@ Welcome to our BayesFlow library for efficient simulation-based Bayesian workflo
88
For starters, check out some of our walk-through notebooks:
99

1010
1. [Quickstart amortized posterior estimation](examples/Intro_Amortized_Posterior_Estimation.ipynb)
11-
2. [Detecting model misspecification in posterior inference](examples/Model_Misspecification.ipynb)
12-
3. [Principled Bayesian workflow for cognitive models](examples/LCA_Model_Posterior_Estimation.ipynb)
13-
4. [Posterior estimation for ODEs](examples/Linear_ODE_system.ipynb)
14-
5. [Posterior estimation for SIR-like models](examples/Covid19_Initial_Posterior_Estimation.ipynb)
15-
6. [Model comparison for cognitive models](examples/Model_Comparison_MPT.ipynb)
16-
7. [Hierarchical model comparison for cognitive models](examples/Hierarchical_Model_Comparison_MPT.ipynb)
11+
2. [Tackling strange bimodal distributions](examples/TwoMoons_Bimodal_Posterior.ipynb)
12+
3. [Detecting model misspecification in posterior inference](examples/Model_Misspecification.ipynb)
13+
4. [Principled Bayesian workflow for cognitive models](examples/LCA_Model_Posterior_Estimation.ipynb)
14+
5. [Posterior estimation for ODEs](examples/Linear_ODE_system.ipynb)
15+
6. [Posterior estimation for SIR-like models](examples/Covid19_Initial_Posterior_Estimation.ipynb)
16+
7. [Model comparison for cognitive models](examples/Model_Comparison_MPT.ipynb)
17+
8. [Hierarchical model comparison for cognitive models](examples/Hierarchical_Model_Comparison_MPT.ipynb)
1718

1819
## Project Documentation
1920

@@ -83,7 +84,7 @@ amortized_posterior = bf.amortizers.AmortizedPosterior(inference_net, summary_ne
8384
Finally, we connect the networks with the generative model via a `Trainer` instance:
8485

8586
```python
86-
trainer = bf.trainers.Trainer(amortizer=amortized_posterior, generative_model=generative_model)
87+
trainer = bf.trainers.Trainer(amortizer=amortized_posterior, generative_model=generative_model, memory=True)
8788
```
8889

8990
We are now ready to train an amortized posterior approximator. For instance,
@@ -282,9 +283,9 @@ Learning both densities enables us to approximate marginal likelihoods or perfor
282283

283284
### References and Further Reading
284285

285-
Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Köthe, U., & Bürkner, P.-C. (2023).
286-
JANA: Jointly amortized neural approximation of complex Bayesian models.
287-
*Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, 216*, 1695-1706.
286+
Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Köthe, U., & Bürkner, P.-C. (2023).
287+
JANA: Jointly amortized neural approximation of complex Bayesian models.
288+
*Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, 216*, 1695-1706.
288289
([arXiv](https://arxiv.org/abs/2302.09125))([PLMR](https://proceedings.mlr.press/v216/radev23a.html))
289290

290291
## Support

0 commit comments

Comments
 (0)