@@ -8,8 +8,8 @@ def diffusion_model_edm_F():
88 from bayesflow .experimental import DiffusionModel
99
1010 return DiffusionModel (
11- subnet_kwargs = { "widths" : [ 64 , 64 ]} ,
12- integrate_kwargs = {"method" : "rk45" , "steps" : 100 },
11+ subnet = MLP ([ 8 , 8 ]) ,
12+ integrate_kwargs = {"method" : "rk45" , "steps" : 250 },
1313 noise_schedule = "edm" ,
1414 prediction_type = "F" ,
1515 )
@@ -20,8 +20,8 @@ def diffusion_model_edm_velocity():
2020 from bayesflow .experimental import DiffusionModel
2121
2222 return DiffusionModel (
23- subnet_kwargs = { "widths" : [ 64 , 64 ]} ,
24- integrate_kwargs = {"method" : "rk45" , "steps" : 100 },
23+ subnet = MLP ([ 8 , 8 ]) ,
24+ integrate_kwargs = {"method" : "rk45" , "steps" : 250 },
2525 noise_schedule = "edm" ,
2626 prediction_type = "velocity" ,
2727 )
@@ -32,8 +32,8 @@ def diffusion_model_edm_noise():
3232 from bayesflow .experimental import DiffusionModel
3333
3434 return DiffusionModel (
35- subnet_kwargs = { "widths" : [ 64 , 64 ]} ,
36- integrate_kwargs = {"method" : "rk45" , "steps" : 100 },
35+ subnet = MLP ([ 8 , 8 ]) ,
36+ integrate_kwargs = {"method" : "rk45" , "steps" : 250 },
3737 noise_schedule = "edm" ,
3838 prediction_type = "noise" ,
3939 )
@@ -44,8 +44,8 @@ def diffusion_model_cosine_F():
4444 from bayesflow .experimental import DiffusionModel
4545
4646 return DiffusionModel (
47- subnet_kwargs = { "widths" : [ 64 , 64 ]} ,
48- integrate_kwargs = {"method" : "rk45" , "steps" : 100 },
47+ subnet = MLP ([ 8 , 8 ]) ,
48+ integrate_kwargs = {"method" : "rk45" , "steps" : 250 },
4949 noise_schedule = "cosine" ,
5050 prediction_type = "F" ,
5151 )
@@ -56,8 +56,8 @@ def diffusion_model_cosine_velocity():
5656 from bayesflow .experimental import DiffusionModel
5757
5858 return DiffusionModel (
59- subnet_kwargs = { "widths" : [ 64 , 64 ]} ,
60- integrate_kwargs = {"method" : "rk45" , "steps" : 100 },
59+ subnet = MLP ([ 8 , 8 ]) ,
60+ integrate_kwargs = {"method" : "rk45" , "steps" : 250 },
6161 noise_schedule = "cosine" ,
6262 prediction_type = "velocity" ,
6363 )
@@ -68,8 +68,8 @@ def diffusion_model_cosine_noise():
6868 from bayesflow .experimental import DiffusionModel
6969
7070 return DiffusionModel (
71- subnet_kwargs = { "widths" : [ 64 , 64 ]} ,
72- integrate_kwargs = {"method" : "rk45" , "steps" : 100 },
71+ subnet = MLP ([ 8 , 8 ]) ,
72+ integrate_kwargs = {"method" : "rk45" , "steps" : 250 },
7373 noise_schedule = "cosine" ,
7474 prediction_type = "noise" ,
7575 )
0 commit comments