You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+30-25Lines changed: 30 additions & 25 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -141,18 +141,17 @@ model parameters as a result of conditioning on the data.
141
141
142
142
- Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., & Köthe, U. (2020).
143
143
BayesFlow: Learning complex stochastic models with invertible neural networks.
144
-
<em>IEEE Transactions on Neural Networks and Learning Systems</em>, available
145
-
for free at: https://arxiv.org/abs/2003.06281.
144
+
<em>IEEE Transactions on Neural Networks and Learning Systems, 33(4)</em>, 1452-1466.
146
145
147
146
- Radev, S. T., Graw, F., Chen, S., Mutters, N. T., Eichel, V. M., Bärnighausen, T., & Köthe, U. (2021).
148
-
OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany. <em>PLoS computational biology</em>, 17(10), e1009472.
147
+
OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany. <em>PLoS computational biology, 17(10)</em>, e1009472.
149
148
150
149
- Bieringer, S., Butter, A., Heimel, T., Höche, S., Köthe, U., Plehn, T., & Radev, S. T. (2021).
151
-
Measuring QCD splittings with invertible networks. <em>SciPost Physics</em>, 10(6), 126.
150
+
Measuring QCD splittings with invertible networks. <em>SciPost Physics, 10(6)</em>, 126.
152
151
153
152
- von Krause, M., Radev, S. T., & Voss, A. (2022).
154
153
Mental speed is high until age 60 as revealed by analysis of over a million participants.
155
-
<em>Nature Human Behaviour</em>, 6(5), 700-708.
154
+
<em>Nature Human Behaviour, 6(5)</em>, 700-708.
156
155
157
156
## Model Misspecification
158
157
@@ -174,7 +173,7 @@ The amortizer knows how to combine its losses and you can inspect the summary sp
174
173
175
174
### References and Further Reading
176
175
177
-
- Schmitt, M., Bürkner P. C., Köthe U., & Radev S. T. (2021). Detecting Model
176
+
- Schmitt, M., Bürkner P. C., Köthe U., & Radev S. T. (2022). Detecting Model
178
177
Misspecification in Amortized Bayesian Inference with Neural Networks. <em>ArXiv
179
178
preprint</em>, available for free at: https://arxiv.org/abs/2112.08866
180
179
@@ -283,14 +282,14 @@ Learning both densities enables us to approximate marginal likelihoods or perfor
283
282
284
283
### References and Further Reading
285
284
286
-
Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Köthe, U., & Bürkner, P. C. (2023).
This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy -– EXC-2181 - 390900948 (the Heidelberg Cluster of Excellence STRUCTURES) and -- EXC-2075 - 390740016 (the Stuttgart Cluster of Excellence SimTech), the Informatics for Life initiative funded by the Klaus Tschira Foundation, and Google Cloud through the Academic Research Grants program.
292
292
293
-
294
293
## Citing BayesFlow
295
294
296
295
You can cite BayesFlow along the lines of:
@@ -299,34 +298,40 @@ You can cite BayesFlow along the lines of:
299
298
- We approximated the likelihood with neural likelihood estimation (NLE; Papamakarios et al., 2019), as implemented in the BayesFlow software for amortized Bayesian workflows (Radev et al., 2023b).
300
299
- We performed simultaneous posterior and likelihood estimation with jointly amortized neural approximation (JANA; Radev et al., 2023a), as implemented in the BayesFlow software for amortized Bayesian workflows (Radev et al., 2023b).
301
300
302
-
1. Radev, S. T., Schmitt, M., Schumacher, L., Elsemüller, L., Pratz, V., Schälte, Y., Köthe, U., & Bürkner, P.-C. (2023). BayesFlow: Amortized Bayesian Workflows With Neural Networks. *arXiv:2306.16015*. ([arXiv](https://arxiv.org/abs/2306.16015))
303
-
2. Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., Köthe, U. (2020). BayesFlow: Learning Complex Stochastic Models With Invertible Neural Networks. IEEE Trans Neural Netw Learn Syst. 33(4). 1452-1466. ([arXiv](https://arxiv.org/abs/2003.06281))([IEEE TNNLS](https://ieeexplore.ieee.org/document/9298920))
304
-
3. Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Köthe, U., & Bürkner, P.-C. (2023). JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models. *Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence*. 216:1695-1706. ([arXiv](https://arxiv.org/abs/2302.09125))([PLMR](https://proceedings.mlr.press/v216/radev23a.html))
301
+
1. Radev, S. T., Schmitt, M., Schumacher, L., Elsemüller, L., Pratz, V., Schälte, Y., Köthe, U., & Bürkner, P.-C. (2023). BayesFlow: Amortized Bayesian workflows with neural networks. *arXiv:2306.16015*. ([arXiv](https://arxiv.org/abs/2306.16015))
302
+
2. Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., Köthe, U. (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. *IEEE Transactions on Neural Networks and Learning Systems, 33(4)*, 1452-1466. ([arXiv](https://arxiv.org/abs/2003.06281))([IEEE TNNLS](https://ieeexplore.ieee.org/document/9298920))
303
+
3. Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Köthe, U., & Bürkner, P.-C. (2023). JANA: Jointly amortized neural approximation of complex Bayesian models. *Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, 216*, 1695-1706. ([arXiv](https://arxiv.org/abs/2302.09125))([PLMR](https://proceedings.mlr.press/v216/radev23a.html))
305
304
306
305
**BibTeX:**
307
306
308
307
```
309
308
@misc{radev2023bayesflow,
310
-
title = {BayesFlow: Amortized Bayesian Workflows With Neural Networks},
309
+
title = {{BayesFlow}: Amortized Bayesian workflows with neural networks},
311
310
author = {Stefan T Radev and Marvin Schmitt and Lukas Schumacher and Lasse Elsem\"{u}ller and Valentin Pratz and Yannik Sch\"{a}lte and Ullrich K\"{o}the and Paul-Christian B\"{u}rkner},
312
311
year = {2023},
313
312
publisher= {arXiv},
314
313
url={https://arxiv.org/abs/2306.16015}
315
314
}
316
315
317
316
@article{radev2020bayesflow,
318
-
doi = {10.1109/TNNLS.2020.3042395},
319
-
year = {2020},
320
-
title = {{BayesFlow}: Learning Complex Stochastic Models With Invertible Neural Networks},
321
-
journal = {IEEE Transactions on Neural Networks and Learning Systems},
322
-
author = {Radev, Stefan T and Mertens, Ulf K and Voss, A and Ardizzone, L and K\"{o}the, U},
317
+
title={{BayesFlow}: Learning complex stochastic models with invertible neural networks},
318
+
author={Radev, Stefan T. and Mertens, Ulf K. and Voss, Andreas and Ardizzone, Lynton and K{\"o}the, Ullrich},
319
+
journal={IEEE transactions on neural networks and learning systems},
320
+
volume={33},
321
+
number={4},
322
+
pages={1452--1466},
323
+
year={2020},
324
+
publisher={IEEE}
323
325
}
324
326
325
-
@inproceedings{radev2023jana,
326
-
title={{JANA}: Jointly Amortized Neural Approximation of Complex Bayesian Models},
327
-
author={Stefan T. Radev and Marvin Schmitt and Valentin Pratz and Umberto Picchini and Ullrich Koethe and Paul-Christian Buerkner},
328
-
booktitle={The 39th Conference on Uncertainty in Artificial Intelligence},
329
-
year={2023},
330
-
url={https://openreview.net/forum?id=dS3wVICQrU0}
327
+
@inproceedings{pmlr-v216-radev23a,
328
+
title = {{JANA}: Jointly amortized neural approximation of complex {B}ayesian models},
329
+
author = {Radev, Stefan T. and Schmitt, Marvin and Pratz, Valentin and Picchini, Umberto and K\"othe, Ullrich and B\"urkner, Paul-Christian},
330
+
booktitle = {Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence},
331
+
pages = {1695--1706},
332
+
year = {2023},
333
+
volume = {216},
334
+
series = {Proceedings of Machine Learning Research},
0 commit comments